• Title/Summary/Keyword: Rock site

Search Result 897, Processing Time 0.029 seconds

Vibration Prediction and Charge Estimation in Hard Rock Blasting Site (경암층 발파현장에서 진동예측 및 장약량산정)

  • Park, Yeon-Soo;Park, Sun-Joon;Choi, Sun-Min;Mun, Soo-Bong;Mun, Byeong-Ok;Jeong, Gyung-Yul;Jeong, Tae-Hyeong;Hwang, Seung-Ill;Kim, Min-Jung;Park, Sang-Chul;Kim, Jung-Ju;Lee, Byeong-Geun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.313-319
    • /
    • 2009
  • The blasting has a lot of economic efficiency and speediness but it can damage to a neighbor structure, a domestic animal and a cultured fish due to the blasting vibration, then the public grievance is increased. Therefore, we need to manage the blasting vibration efficiently. The prediction of the correct vibration velocity is not easy because there are lots of different kinds of the scale of blasting vibration and it has a number of a variable effect. So we figure the optimum line through the least-squares regression by using the vibration data measured in hard rock blasting and compared with the design vibration prediction equation. As a result, we confirm that the vibration estimated in this paper is bigger than the design vibration prediction equation in the same charge and distance. If there is a Gaussian normal distribution data on the left-right side of the least squares regression, then we can estimate the vibration prediction equation on reliability 50%(${\beta}=0$), 90%(${\beta}=1.28$), 95%(${\beta}=1.64$). 99.9%(${\beta}=3.09$). As a result, it appears to be suitable that the reliability is 99% at the transverse component, the reliability 95% is at the vertical component, the reliability 90% is at the longitudinal component and the reliability is 95% at the peak vector sum component.

Mechanical evolution of radioactive waste repository and rock mass - A review on ANDRA's case - (방사성 폐기물 지층 처분장과 암반의 역학적 특성 변화 - ANDRA의 예 -)

  • Chung, So-Keul;Synn, Joong-Ho
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.165-174
    • /
    • 2008
  • Thermo-hydro-chemico-mechanical evolution of the radioactive waste repository and surrounding geological media is one of the key issues for the radioactive waste disposal. This article describes not only the basic context for the site selection but also a reasonable strategy for the repository related research based on the results of the French repository project carried out by ANDRA (National radioactive waste management agency). To have some alternatives for the determination of a preferable depth and geological media, it would be recommendable to establish a database system. The curing process of the fractures or microfissures in the EDZ (Excavation Disturbed Zone) during operation time has to be examined considering the evolution of the EDZ and the reversibility of the repository. It is prerequisite to carry out a feasibility study and to validate the design concept and design parameters in a properly constructed underground research laboratory (URL) in Korea.

Experimental Study on Estimation of $CO_2$ Saturation by the Electrical Resistivity Monitoring during $CO_2$ Injection for Rock Samples ($CO_2$ 지중저장에 의한 전기비저항 모니터링 및 포화도 예측을 위한 실험 연구)

  • Kim, Jong-Wook;Song, Young-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.388-396
    • /
    • 2010
  • As a part of basic studies on monitoring and saturation estimation of carbon dioxide ($CO_2$) storage using resistivity survey, laboratory experiment has been conducted to measure the change of the electrical resistivity through repeated experiments of supercritical $CO_2$ and brine water injection into homogeneous and heterogeneous sandstones. The $CO_2$ saturation is estimated by using resistivity index based on the resistivity measurements. The experimental results of two types of sandstones show that the effect of pore structure in the rock and the effect of contained clay minerals in the rock can be affected to calculate the $CO_2$ saturation. The result can be useful to evaluate the $CO_2$ saturation based on resistivity survey at the site where $CO_2 sequestrates.

Case Study on the Tunnel Collapse at the Shallow Depth (NATM터널 저토피 구간에서의 막장붕락 사례연구)

  • Baek Ki-Hyun;Roh Jong-Ryun;Kim Yong-Il;Cho Sang-Kook;Hwang Nag-Youn
    • Tunnel and Underground Space
    • /
    • v.15 no.2 s.55
    • /
    • pp.102-110
    • /
    • 2005
  • ○ ○ tunnel that is located at Iksan - Jangsu freeway ○ ○, has collapsed during construction at the valley with shallow depth. Although, the site investigations, such as TSP, drilling exploration and so of indicated the presence of discontinuities in this section. The RMR was upgraded and the construction were carried out because that not only actual rock qualities were relatively good during construction but also the tunnel foe was stabilized. However, the tunnel was collapsed at the same time blasting of full face, and surface and underground water was infiltrated due to the settlement of the upper part of the tunnel face. To restore the collapsed section, 3-d tunnel stability analysis was performed and suitable reinforcement methods were chosen. The cavity of the upper tunnel face was stabilized by means of UAM and ALC injection. And the settlement was restored using L.W grouting method.

An Analysis of Pore Network of Drilling Core from Pohang Basin for Geological Storage of CO2 (이산화탄소 지중저장을 위한 포항분지 시추코어의 공극구조 분석)

  • Park, Jihwan;Park, Hyeong-Dong
    • Tunnel and Underground Space
    • /
    • v.26 no.3
    • /
    • pp.181-191
    • /
    • 2016
  • In geological storage of $CO_2$, the behavior of $CO_2$ is influenced by pore network of rock. In this study, the drilling cores from Pohang Basin were analyzed quantitatively using three-dimensional images acquired by X-ray micro computed tomography. The porosities of sandstone specimens around 740 m-depth (T1), 780 m-depth (T2) and 810 m-depth (T3) which were target strata were 25.22%, 23.97%, 6.28%, respectively. Equivalent diameter, volume, area, local thickness of pores inside the sandstone specimens were analyzed. As a result, the microstructural properties of T1 and T2 specimens were more suitable for geological storage of $CO_2$ than those of T3 specimens. The result of the study can be used as input data of the site for decision of injection condition, flow simulation and so on.

Radiotoxicity flux and concentration as complementary safety indicators for the safety assessment of a rock-cavern type LILW repository

  • Jo, Yongheum;Han, Sol-Chan;Ok, Soon-Il;Choi, Seonggyu;Yun, Jong-Il
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1324-1329
    • /
    • 2018
  • This study presents a practical application of complementary safety indicators, which can be applied in a safety assessment of a radioactive waste repository by excluding a biosphere simulation and comparing the artificial radiation originating from the repository with the background natural radiation. Complementary safety indicators (radiotoxicity flux from geosphere and radiotoxicity concentration in seawater) were applied in the safety assessment of a rock-cavern type low and intermediate level radioactive waste (LILW) repository in the Republic of Korea. The natural radionuclide ($^{40}K$, $^{226,228}Ra$, $^{232}Th$, and $^{234,235,238}U$) concentrations in the groundwater and seawater at the Gyeongju LILW repository site were measured. Based on the analyzed concentrations of natural radionuclides, the levels of natural radiation were determined to be $8.6{\times}10^{-5}$ - $8.0{\times}10^{-4}Sv/m^2/yr$ and $6.95{\times}10^{-5}Sv/m^3$ for radiotoxicity flux from the geosphere and radiotoxicity concentration in seawater, respectively. From simulation results obtained using a Goldsim-based safety assessment model, it was determined that the radiotoxicity of radionuclides released from the repository is lower than that of the natural radionuclides inherently present in the natural waters. The applicability of the complementary safety indicators to the safety case was discussed with regard to reduction of the uncertainty associated with biosphere simulations, and communication with the public.

Structural monitoring and analyses on the stability and health of a damaged railway tunnel

  • Zhao, Yiding;Yang, Junsheng;Zhang, Yongxing;Yi, Zhou
    • Advances in concrete construction
    • /
    • v.11 no.5
    • /
    • pp.375-386
    • /
    • 2021
  • In this paper, a study of stability and health of a newly-built railway tunnel is presented. The field test was implemented to monitor the secondary lining due to the significant cracking behaviors influenced the stability and health of the tunnel structure. Surface strain gauges were installed for monitoring the status of crack openings, and the monitoring outputs demonstrated that the cracks were still in the developing stage. Additionally, adjacent tunnel and poor condition of surrounding rock were identified as the causes of the lining cracking by systematically characterizing the crack spatial distribution, tunnel site and surrounding rock conditions. Reconstruction of partial lining and reconstruction of the whole secondary lining were designed as the maintenance projects for different cracking regions based on the construction feasibility. For assessing the health conditions of the reinforced lining, embedded strain gauges were set up to continuously measure the strain and the internal force of the reconstructed structures. For the partially reconstructed lining, the outputs show the maximum tensile elongation is 0.018 mm during 227 days, which means the structure has no obvious deformation after maintenance. The one-year monitoring of full-section was implemented in the other two completely reconstructed cross-sections by embedded strain gauge. The outputs show the reconstructed secondary lining has undertaken the pressure of surrounding rock with the time passing. According to the calculated compressive and tensile safety factors, the completely reconstructed lining has been in reliable and safe condition during the past year after reinforcement. It can conclude that the aforementioned maintenance projects can effectively ensure the stability and health of this tunnel.

Development of roadheader performance prediction model and review of machine specification (로드헤더 장비사양 검토 및 굴착효율 예측 모델 개발)

  • Jae Hoon Jung;Ju Hyi Yim;Jae Won Lee;Han Byul Kang;Do Hoon Kim;Young Jin Shin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.3
    • /
    • pp.221-243
    • /
    • 2023
  • The use of roadheaders has been increasing to mitigate the problems of noise and vibration during tunneling operations in urban area. Since lack of experience of roadheader for hard rock, the selection of appropriate machines and the evaluation of cutting rates have been challenging. Currently, empirical models developed overseas are commonly used to evaluate cutting rates, but their effectiveness has not been verified for domestic rocks. In this paper, a comprehensive literature review was conducted to assess the rock cutting force, cutterhead capacity, and cutting rate to select the appropriate machine and evaluate its performance. The cutterhead capacity was reviewed based on the literature results for the site. Furthermore, a new empirical model and simplified method for predicting cutting rates were proposed through data analysis in relation to operation time and rock strength, and compared with those of the conventional model from the manufacturer. The results show good agreement for high strength range upper 80 MPa of uniaxial compressive strength.

A Case Study on the Cause Analysis of Subsidence in Limestone Mine Using LiDAR-Based Geometry Model (라이다 기반 정밀 형상 모델 활용 석회석 광산 지반침하 원인분석 사례연구)

  • Hwicheol Ko;Taewook Ha;Sang Won Jeong;Sunghyun Park;Seung-tae Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.126-140
    • /
    • 2023
  • In this study, the cause of subsidence in limestone mine was analyzed using a LiDAR-based geometry model. Using UAV and ground-based LiDAR systems, a precise geometry model was constructed for the subsidence surface and mine tunnel, and the results of on-site geological survey and rock mass classification were utilized. Through the geometry model, distribution of thickness of crown pillar and faults around the subsidence area, calculation of the volume of the subsidence area and subsidence deposit, and analysis of the subsidence surface inclination were conducted. Through these analyzes, the causes of ground subsidence were identified.

암반지하수 저류지 개발 전망

  • 이기철;한정상;부성안;장준영;박종철
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.85-92
    • /
    • 2002
  • When the United Nation classified as Korea is the one of the water deficit country. The consensus was made that the water is the one of the precious national resources. Government increases their R/D budget trying to get more clean water bodies. For instances, 'Sustainable Water Resources Development' project is the one of major title in '21 Century Frontier Research project and there are several small research projects are undergoing by the Ministry of Agriculture and KARICO. However, when the environmental preservation issue has been get more emphasis, construction of the Surface Dam met the blockage from the environmentalists due to the problem of the their water buried area. Since the most fitting site for surface dam had been used in the past, some engineer move their focus on modification of the existing Dam's height to enlarge its capacity or dredging the bottom of the reservoir recently However dredging evoke water quality problem in return by accumulated materials at the bottom. Last year the Dong Gang Dam plan has been canceled by environmental problem in water buried area of the reservoir. With the point of this view, ground water gets more focus for the one of the useful alternative for clean water bodies. Underground dam technique which had widely applied once in the early nineteen eighties by the KARICO and attenuated due to engineering insufficiency. The technique is newly studied with the advanced engineering technique. Still groundwater usage rate in Korea is much lower comparing with the advanced countries and has many rooms to develop. Wells, under ground dam and radial collector wells are typical facilities up to now. There is little application in Korea for the Recharge Dam, which had been widely used in the advanced countries. The Recharge Dam is technique to conjunct surface water and groundwater body together, This technique had developed to increase groundwater recharge at the beginning This research is the result of the study on the possibility of the development of the new technology, Groundwater Reservoir' which was modified from Recharge Dam. Groundwater Reservoir is like a deep artificial lakes trenched in hard rock aquifer to get groundwater. The advantage of the Groundwater Reservoir is followings 1) It can be developed at the plains area, not in the deep valley 2) Huge water body can be developed without dam 3) Small buried area comparing surface water dam makes the least environmental effect. 4) Trenching cost can be substitute by the income of the selling rock debris 5) Outfit of the reservoir can be modified to match with the site prospect 6) Rock debris can be used as constructing materials 7) It can be used as groundwater recharge system when the heavy rains comes 8) The reservoir looks like scenery lake with huge clean water bodies.

  • PDF