• Title/Summary/Keyword: Rock mass discontinuities

Search Result 126, Processing Time 0.027 seconds

Stability and Deformation Analysis Considering Discontinuities in Rock Mass (불연속면을 고려한 암반의 안정변형해석)

  • Hwang, Jae-Yun
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.68-75
    • /
    • 2015
  • Rock mass includes such discontinuities as fault, joint, bedding, crack, schistosity, cleavage. The rock mass behavior, therefore, is influenced by the discontinuity behavior. In this study, a stability and deformation analysis method considering discontinuities in rock mass is proposed, and then applied to the rock collapse disaster site. As the method, the stability analysis by the stereographic projection method was carried out in an actual site, the deformation analysis program by the finite element method including the joint element was developed, and performed. To demonstrate the applicability of this developed stability and deformation analysis method considering discontinuities in rock mass, the analysis results are examined and compared with the failure behavior at the rock mass.

Engineering Geological Characteristics of Sedimentary Rocks at Ulsan Area (울산지역 퇴적암류의 지질공학적 특성)

  • Kim, Kwang-Sik;Kim, Kwang-Yeom;Seo, Yong-Seok;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.535-544
    • /
    • 2007
  • Discontinuities developed in a sedimentary rock mass are the most important factor to determine mechanical properties of the rock mass. Parameters described discontinuities in rock mass generally connote heterogeneity and uncertainty. In this study, probabilistic statistics method was used to determine parameters of discontinuities quantitatively and objectively. The field survey was conducted at 33 sedimentary rock slopes in Ulsan area, according to the suggested methods for the quantitative description of discontinuities in rock mass(ISRM, 1978). The engineering geological characteristics of the sedimentary rocks at Ulsan area was determined as probability distribution function deduced by analyzing parameters of discontinuities.

A Study of Simple Rock Mass Rating for Tunnel Using Multivariate Analysis (다변량분석을 이용한 터널에서의 간편 RMR에 관한 연구)

  • 위용곤;노상림;윤지선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.493-500
    • /
    • 2000
  • Rock Mass Rating has been widely applied to the underground tunnel excavation and many other practical problems in rock engineering. However, Rock Mass Rating is hard to make out because it is difficult to estimate each valuation items through all kind of field situations and items of RMR have interdependence. So the experts of tunnel assessment have problems with rating rock mass. In this study, using multivariate analysis based on domestic data(1011EA) of water conveyance tunnel, we presented rock mass rating system which is objective and easy to use. The constituents of RMR are decided to RQD, condition of discontinuities, groundwater conditions, orientation of discontinuities, intact rock strength, spacing of discontinuities in important order. In each step, we proposed the best multiple regression model for RMR system. And using data which have been collected at other site, we examined that presented multiple regression model was useful.

  • PDF

Technical Development for Extraction of Discontinuities in Rock Mass Using LiDAR (LiDAR를 이용한 암반 불연속면 추출 기술의 개발 현황)

  • Lee, Hyeon-woo;Kim, Byung-ryeol;Choi, Sung-oong
    • Tunnel and Underground Space
    • /
    • v.31 no.1
    • /
    • pp.10-24
    • /
    • 2021
  • Rock mass classification for construction of underground facilities is essential to secure their stabilities. Therefore, the reliable values for rock mass classification from the precise information on rock discontinuities are most important factors, because rock mass discontinuities can affect exclusively on the physical and mechanical properties of rock mass. The conventional classification operation for rock mass has been usually performed by hand mapping. However, there have been many issues for its precision and reliability; for instance, in large-scale survey area for regional geological survey, or rock mass classification operation by non-professional engineers. For these reasons, automated rock mass classification using LiDAR becomes popular for obtaining the quick and precise information. But there are several suggested algorithms for analyzing the rock mass discontinuities from point cloud data by LiDAR scanning, and it is known that the different algorithm gives usually different solution. Also, it is not simple to obtain the exact same value to hand mapping. In this paper, several discontinuity extract algorithms have been explained, and their processes for extracting rock mass discontinuities have been simulated for real rock bench. The application process for several algorithms is anticipated to be a good reference for future researches on extracting rock mass discontinuities from digital point cloud data by laser scanner, such as LiDAR.

An Evaluation Method for Three-Dimensional Morphologies of Discontinuities considering the Shear Direction

  • Zhang, Qingzhao;Luo, Zejun;Pan, Qing;Shi, Zhenming;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.32 no.1
    • /
    • pp.85-99
    • /
    • 2022
  • Rock discontinuities, as weak interfaces in rock, control mechanical properties of rock mass. Presence of discontinuities complicates the engineering properties of rock, which is the root of anisotropy and heterogeneity that have nonnegligible influences on the rock engineering. Morphological characteristics of discontinuities in natural rock are an important factor influencing the mechanical properties, particularly roughness, of discontinuities. Therefore, the accurate measurement and characterization of morphologies of discontinuities are preconditions for studying mechanical properties of discontinuities. Taking discontinuities in red sandstone as research objects, the research obtained three-dimensional (3D) morphologies of discontinuities in natural rock by carrying out 3D morphological scanning tests. The waviness and roughness were separated from 3D morphologies of rock discontinuities through wavelet transform. In addition, the calculation method for the overall slope root mean square (RMS) as well as slope RMSs of waviness and roughness of 3D morphologies of discontinuities considering the shear direction was proposed. The research finally determined an evaluation method for 3D morphologies of discontinuities by quantitatively characterizing 3D morphologies with the mean value of the three slope RMSs.

A Study of Efficient Rock Mass Rating for Tunnel Using Multivariate Analysis (다변량분석을 이용한 터널에서의 효율적인 암반분류에 관한 연구)

  • Wye, Yong-Gon;No, Sang-Lim;Yoon, Ji-Son
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.41-49
    • /
    • 2000
  • Rock Mass Rating has been widely applied to the underground tunnel excavation and many other practical problems in rock engineering. However, Rock Mass Rating is hard, even by the experts of tunnel assessment owing to lack of investigation system. In this study, using multivariate analysis we presented rock mass rating system that is objective and easy to use. The constituents of RMR are decided to RQD, condition of discontinuities, groundwater conditions, intact rock strength, orientation of discontinuities, spacing of discontinuities in important order. In each step, we proposed the best multiple regression model for RMR system.

  • PDF

Case study on application of discontinuity density as a characteristics factor of rock mass groundwater (암반지하수 특성 인자로서 불연속면 밀도 적용 사례 연구)

  • Ihm, Myeong Hyeok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.5
    • /
    • pp.693-698
    • /
    • 2024
  • As there are various types of discontinuities developing along with various rock types, the orientation and density of each type of discontinuities were measured to analyze the behavior of groundwater within the rock mass. Among the orientations of discontinuities, the strike was measured in azimuth and expressed as a discontinuity trajectory, and the density of discontinuities was quantified as the sum of the lengths of discontinuities developed per unit area. The overall discontinuity trajectory in the study area is predominantly in the northeast direction, the north-south and east-west directions are dominant in the igneous rock distribution area, and the east-west and northeast directions are dominant in the sedimentary rock distribution area. Among the types of discontinuities, they show discontinuity trajectories similar to the northeast direction, which is the dominant orientation of stratum boundaries, stratification, and foliation. The discontinuity density ranges from 0.1 m-1 to 1,000 m-1. The density distribution of discontinuities was expressed in the form of discontinuity contour diagrams. As a result, the crushed rock near Demiseam in the southern and southwestern part of the study area, the igneous rock area around Maryeong-myeon, the igneous rock area near Yongdam Dam in the northeast, and the igneous rock area near Unilam and Banilam in the northwest showed the highest density of discontinuities at over 100m-1., the sedimentary rock area near Maisan Mountain showed relatively low values. It suggests that the results of geophysical exploration and drilling survey data in the existing study area, as well as the geological structure and density and trajectory of discontinuities, may be important factors in the behavior of groundwater in rock mass in the future.

Estimation of Discontinuity Orientations in Excavation Faces (굴착면에서의 분리면방향성 평가)

  • Ro, Byung-Don;Han, Byeong-Hyeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1484-1489
    • /
    • 2005
  • An inhomogeneous and anisotropic rock has different properties at different location. Thus, this refers to any of the properties which we may be measuring. There are two concepts of rock mass, namely, CHILE(Continuous, Homogeneous, Isotropic, Linear Elastic) material and DIANE(Discontinuous, Inhomogeneous, Anisotropic, Non-linear Elastic) rock. The former is essentially the properties of intact rock, the latter is essentially the properties governed by the structure of rock. In geotechnical aspect, the most important parameter is strength of rock or rock mass. In particular, characteristics of strength of rock mass depend upon the orientation of discontinuities And this orientation of discontinuities has different properties at different direction of excavation. Therefore, it needs for characterization of different properties of discontinuity orientation against different direction of excavation.

  • PDF

Engineering Problems in Rock Discontinuity (암반 불연속면의 공학적 문제-(General Report))

  • 신희순
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.161-184
    • /
    • 2001
  • Rock masses usually contain such features as bedding planes, faults, fissures, fractures, joints and other mechanical defects which, although formed from a wide range of geological processes, posses the common characteristics of low shear strength, negligible tensile strength and high fluid conductivity compared with the surrounding rock material. In the engineering context here, the discontinuities can be the single most important factor governing the deformability, strength and permeability of the rock mass. Moreover, a particularly large and persistent discontinuity could critically affect the stability of any surface or underground excavation. For these reasons, it is necessary to develop a thorough understanding of the geometrical, mechanical and hydrological properties of discontinuities and the way in which these will affect rock mechanics and hence rock engineering.

  • PDF

Numerical investigation of the impact of geological discontinuities on the propagation of ground vibrations

  • Haghnejad, Ali;Ahangari, Kaveh;Moarefvand, Parviz;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.545-552
    • /
    • 2018
  • Blast-induced ground vibrations by a significant amount of explosives may cause many problems for mining slope stability. Geological discontinuities have a significant influence on the transmission of dynamic pressure of detonation and according to their position relative to the slope face may have damaging or useful impacts on the slope stability. In this study, the effect of geological discontinuities was investigated by modelling a slope with geological discontinuities through applying the dynamic pressure in three-dimensional discrete element code (3DEC). The geological discontinuities in four states that generally apperceived in mine slopes are considered. Given the advantages of the pressure decay function defined by some researcher, this type of function was used to develop the pressure-time profile. The peak particle velocities (PPV) values were monitored along an axis by utilization of Fish programming language and the results were used as an indicator to measure the effects. As shown in the discontinuity-free model, PPV empirical models are reliable in rocks lacking discontinuities or tightly jointed rock masses. According to the other results, the empirical models cannot be used for the case where the rock mass contains discontinuities with any direction or dip. With regard to PPVs, when the direction of discontinuities is opposite to that of the slope face, the dynamic pressure of detonation is significantly damped toward the slope direction at the surface of discontinuities. On the other hand, when the discontinuities are horizontal, the dynamic pressure of detonation affects the rock mass to a large distance.