• Title/Summary/Keyword: Rock engineering

Search Result 4,398, Processing Time 0.024 seconds

Three-dimensional finite element analysis of urban rock tunnel under static loading condition: Effect of the rock weathering

  • Zaid, Mohammad
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Tunnel provide faster, safer and convenient way of transportation for different objects. The region where it is construction and surrounding medium has significant influence on the overall stability and performance of tunnel. The present simulation has been carried out in order to understand the behaviour of rock tunnel under static loading condition. The present numerical model has been validated with the laboratory scaled model and field data of underground tunnels. Both lined and unlined tunnels have been considered in this paper. Finite element technique has been considered for the simulation of static loading effect on tunnel through Abaqus/Standard. The Mohr-Coulomb material model has been considered to simulate elastoplastic nonlinear behaviour of different rock types, i.e., Basalt, Granite and Quartzite. The four different stages of rock weathering are classified as fresh, slightly, moderately, and highly weathered in case of each rock type. Moreover, extremely weathered stage has been considered in case of Quartzite rock. It has been concluded that weathering of rock and overburden depth has great influence on the tunnel stability. However, by considering a particular weathering stage of rock for each rock type shows varying patterns of deformations in tunnel.

A new dynamic construction procedure for deep weak rock tunnels considering pre-reinforcement and flexible primary support

  • Jian Zhou;Mingjie Ma;Luheng Li;Yang Ding;Xinan Yang
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.319-334
    • /
    • 2024
  • The current theories on the interaction between surrounding rock and support in deep-buried tunnels do not consider the form of pre-reinforcement support or the flexibility of primary support, leading to a discrepancy between theoretical solutions and practical applications. To address this gap, a comprehensive mechanical model of the tunnel with pre-reinforced rock was established in this study. The equations for internal stress, displacement, and the radius of the plastic zone in the surrounding rock were derived. By understanding the interaction mechanism between flexible support and surrounding rock, the three-dimensional construction analysis solution of the tunnel could be corrected. The validity of the proposed model was verified through numerical simulations. The results indicate that the reduction of pre-deformation significantly influences the final support pressure. The pre-reinforcement support zone primarily inhibits pre-deformation, thereby reducing the support pressure. The support pressure mainly affects the accelerated and uniform movement stage of the surrounding rock. The generation of support pressure is linked to the deformation of the surrounding rock during the accelerated movement stage. Furthermore, the strength of the pre-reinforcement zone of the surrounding rock and the strength of the shotcrete have opposite effects on the support pressure. The parameters of the pre-reinforcement zones and support materials can be optimized to achieve a balance between surrounding rock deformation, support pressure, cost, and safety. Overall, this study provides valuable insights for predicting the deformation of surrounding rock and support pressure during the dynamic construction of deep-buried weak rock tunnels. These findings can guide engineers in improving the construction process, ensuring better safety and cost-effectiveness.

A review of experimental and numerical investigations about crack propagation

  • Sarfarazi, Vahab;Haeri, Hadi
    • Computers and Concrete
    • /
    • v.18 no.2
    • /
    • pp.235-266
    • /
    • 2016
  • A rock mass containing non-persistent joints can only fail if the joints propagate and coalesce through an intact rock bridge. Shear strength of rock mass containing non-persistent joints is highly affected by the both, mechanical behavior and geometrical configuration of non-persistent joints located in a rock mass. Existence of rock joints and rock bridges are the most important factors complicating mechanical responses of a rock mass to stress loading. The joint-bridge interaction and bridge failure dominates mechanical behavior of jointed rock masses and the stability of rock excavations. The purpose of this review paper is to present techniques, progresses and the likely future development directions in experimental and numerical modelling of a non-persistent joint failure behaviour. Such investigation is essential to study the fundamental failures occurring in a rock bridge, for assessing anticipated and actual performances of the structures built on or in rock masses. This paper is divided into two sections. In the first part, experimental investigations have been represented followed by a summarized numerical modelling. Experimental results showed failure mechanism of a rock bridge under different loading conditions. Also effects of the number of non-persistent joints, angle between joint and a rock bridge, lengths of the rock bridge and the joint were investigated on the rock bridge failure behaviour. Numerical simulation results are used to validate experimental outputs.