• Title/Summary/Keyword: Rock dynamic property

Search Result 12, Processing Time 0.025 seconds

Experimental Techniques for Dynamic Mechanical Characteristics of Rock Materials (암석의 동역학적 특성 규명을 위한 실험기법의 분석)

  • Oh, Se-Wook;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.38 no.3
    • /
    • pp.30-43
    • /
    • 2020
  • Rock dynamics is a relatively new discipline to study the mechanical behaviors of rock materials (or rock masses) under dynamic loading conditions. Many rock mechanics and rock engineering issues are concerned with the dynamic phenomena such as mining development, civil engineering, earthquake, military science, and various disasters. The significance of rock dynamic researches has been increased in these days. This paper introduces conventional experimental techniques for rock dynamic experimental methods and the particular characteristics of rock dynamic behaviors with several remarkable recent studies.

Characteristics of Dynamic Properties of Granite Specimen from Chungnam Yeongi Area (충남 연기군 지역 화강암 시험편의 동적물성 특성에 관한 연구)

  • Min, June-Hyun;Lee, Seung-Joong;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.480-493
    • /
    • 2011
  • Dynamic rock property is one of most important parameters in design of earthquake-resistant structures. In this study, free-free resonant column test has been conducted to obtain dynamic Young's modulus, dynamic shear modulus, and damping ratio among dynamic properties with granite specimen of Chungnam Yeongi area. The dynamic properties obtained from this test were compared with the physical properties from static rock tests, and their relationship has been analyzed. From our study, it has been concluded that the dynamic Young's modulus and the dynamic shear modulus are linearly proportional to the elastic wave velocity. And also the damping ratio has been identified to be in non-linear inverse proportion to the elastic wave velocity.

SHPB Tests for Rock Dynamic Behavior by Shock Loading (충격하중에 의한 암석의 동적거동 측정시험장치)

  • Park, Chul-Whan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.318-324
    • /
    • 2010
  • Dynamic properties of materials by shock loads such as rock blasting and earthquake are recently attracted in the design of aboveground and underground structures. The advance of measuring devices enables to obtain the whole histories of stress and strain in rock specimen of which the failure is completed in several hundred microseconds. The SHPB has been a popular and promising technique to study the dynamic behavior of rock. And the dynamic compressive, tensile and other test with this experiment system are planned to be Suggested Methods of ISRM. This technical paper is to introduced one study article which focuses the design of 3S (special shaped striker) to produce the half-sine wave to eliminate the problems of the rectangular wave. This article is also describing the advantage of half-sine incident wave and size effect of rock dynamic strength.

Comparative study on dynamic properties of argillaceous siltstone and its grouting-reinforced body

  • Huang, Ming;Xu, Chao-Shui;Zhan, Jin-Wu;Wang, Jun-Bao
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.333-352
    • /
    • 2017
  • A comparison study is made between the dynamic properties of an argillaceous siltstone and its grouting-reinforced body. The purpose is to investigate how grout injection can help repair broken soft rocks. A slightly weathered argillaceous siltstone is selected, and part of the siltstone is mechanically crushed and cemented with Portland cement to simulate the grouting-reinforced body. Core specimens with the size of $50mm{\times}38mm$ are prepared from the original rock and the grouting-reinforced body. Impact tests on these samples are then carried out using a Split Hopkinson Pressure Bar (SHPB) apparatus. Failure patterns are analyzed and geotechnical parameters of the specimens are estimated. Based on the experimental results, for the grouting-reinforced body, its shock resistance is poorer than that of the original rock, and most cracks happen in the cementation boundaries between the cement mortar and the original rock particles. It was observed that the grouting-reinforced body ends up with more fragmented residues, most of them have larger fractal dimensions, and its dynamic strength is generally lower. The mass ratio of broken rocks to cement has a significant effect on its dynamic properties and there is an optimal ratio that the maximum dynamic peak strength can be achieved. The dynamic strain-softening behavior of the grouting-reinforced body is more significant compared with that of the original rock. Both the time dependent damage model and the modified overstress damage model are equally applicable to the original rock, but the former performs much better compared with the latter for the grouting-reinforced body. In addition, it was also shown that water content and impact velocity both have significant effect on dynamic properties of the original rock and its grouting-reinforced body. Higher water content leads to more small broken rock pieces, larger fractal dimensions, lower dynamic peak strength and smaller elastic modulus. However, the water content plays a minor role in fractal dimensions when the impact velocity is beyond a certain value. Higher impact loading rate leads to higher degree of fragmentation and larger fractal dimensions both in argillaceous siltstone and its grouting-reinforced body. These results provide a sound basis for the quantitative evaluation on how cement grouting can contribute to the repair of broken soft rocks.

Probabilistic Analysis of Blasting Loads and Blast-Induced Rock Mass Responses in Tunnel Excavation (터널발파로 인한 굴착선주변 암반거동의 확률론적 연구)

  • 이인모;박봉기;박채우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.89-102
    • /
    • 2004
  • The generated blasting pressure wave initiated under decoupled-charge condition is a function of peak blasting pressure, rise time, and wave-shape function. The peak blasting pressure and the rise time are also the function of explosive and rock properties. The probabilistic distributions of explosive and rock properties are derived from the results of their property tests. Since the probabilistic distributions of explosive and rock properties displayed a normal distribution, the peak blasting pressure and the rise time can also be regarded as a normal distribution. Parameter analysis and uncertainty analysis were performed to identify the most influential parameter that affects the peak blasting pressure and the rise time. Even though the explosive properties were found to be the most influential parameters on the peak blasting pressure and the rise time from the parameter analyses, the result of uncertainty analysis showed that rock properties constituted major uncertainties in estimating the peak blasting pressure and the rise time rather than explosive properties. Damage and overbreak of the remaining rock around the excavation line induced by blasting were evaluated by dynamic numerical analysis. A user-subroutine to estimate the rock damage was coded based on the continuum damage mechanics. This subroutine was linked to a commercial program called 'ABAQUS/Explicit'. The results of dynamic numerical analysis showed that the rock damages generated by the initiation of stopping hole were larger than those from the initiation of contour hole. Several methods to minimize those damages were proposed such as relocation of stopping hole, detailed subdivision of rock classification, and so on. It was found that fracture probability criteria and fractured zones could be distinctively identified by applying fuzzy-random probability.

Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer

  • Chen, Shao J.;Yin, Da W.;Jiang, N.;Wang, F.;Guo, Wei J.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.333-342
    • /
    • 2019
  • Geological dynamic hazards during coal mining can be caused by the failure of a composite system consisting of roof rock and coal layers, subject to different loading rates due to different advancing velocities in the working face. In this paper, the uniaxial compression test simulations on the composite rock-coal layers were performed using $PFC^{2D}$ software and especially the effects of loading rate on the stress-strain behavior, strength characteristics and crack nucleation, propagation and coalescence in a composite layer were analyzed. In addition, considering the composite layer, the mechanisms for the advanced bore decompression in coal to prevent the geological dynamic hazards at a rapid advancing velocity of working face were explored. The uniaxial compressive strength and peak strain are found to increase with the increase of loading rate. After post-peak point, the stress-strain curve shows a steep stepped drop at a low loading rate, while the stress-strain curve exhibits a slowly progressive decrease at a high loading rate. The cracking mainly occurs within coal, and no apparent cracking is observed for rock. While at a high loading rate, the rock near the bedding plane is damaged by rapid crack propagation in coal. The cracking pattern is not a single shear zone, but exhibits as two simultaneously propagating shear zones in a "X" shape. Following this, the coal breaks into many pieces and the fragment size and number increase with loading rate. Whereas a low loading rate promotes the development of tensile crack, the failure pattern shows a V-shaped hybrid shear and tensile failure. The shear failure becomes dominant with an increasing loading rate. Meanwhile, with the increase of loading rate, the width of the main shear failure zone increases. Moreover, the advanced bore decompression changes the physical property and energy accumulation conditions of the composite layer, which increases the strain energy dissipation, and the occurrence possibility of geological dynamic hazards is reduced at a rapid advancing velocity of working face.

Evaluation of Vs profile of Rock-fill Zone using Seismic Surface wave Method (표면파 탐사 기법을 이용한 락필댐 사력재의 전단파 속도 획득)

  • Kim, Jong-Tae;Park, Heon-Joon;Kim, Gyeong-Seob;Kim, Dong-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.101-106
    • /
    • 2008
  • It is very important to measure reliable properties of each zones in dam for seismic design. But, rock-fill zone which have 80% of total volume and support maintenance mainly during earthquake has little property by field test and seismic design was performed using assumed value. So, it is required that reliable properties have to be evaluated by in-situ test. In this study, surface wave method, which is nondestructive such as SASW and HWAW, was applied to dam to evaluate rock-fill zone of dam. In 2 dams, Vs profiles were evaluated reliably and possibility of suggestion of D/B was verified.

  • PDF

Debris Flows Mitigation by means of Flexible Barriers (토석류 피해저감을 위한 유연성 방호책 적용에 관한 연구)

  • You Byung-Ok;Chang Buhm-Soo;Choi Seung-Il;Choi Yu-Kyung
    • 기술발표회
    • /
    • s.2006
    • /
    • pp.220-231
    • /
    • 2006
  • Debris flows are a natural hazard which looks like a combination of flood, land and rock slide. Large rainfall in July 2006 produced several large scale debris flows and many small debris flows that resulted in loss of life and considerable property and highway damage, as was widely reported in the national media. The hazard "debris flow" is still insufficiently researched Furthermore debris flows are very hard to predict. In this paper, a general over view of the debris flow problems along the highway, a generic way for the design and dimensioning of flexible barrier systems will be presented. A brief description of the various unique barrier types will be provided, too. The future for these barrier concepts looks promising because these barriers represent the state of art for such applications and are superior to many other available options.

  • PDF

A Study on the Dynamic Amplification Characteristics of the Domestic Seismic Observation Sites using Shear- and Coda-Wave (S파 및 Coda파를 이용한 국내 관측소지반의 동적 증폭특성에 관한 연구)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.432-439
    • /
    • 2009
  • For more reliable estimation of seismic source, attenuation properties and dynamic ground property, site amplification function should be considered. Among various estimation methods, this study used the Nakamura's method (1989) for estimating site amplification characteristics. This method was originally applied to the surface waves of background noise and therefore there are some limitations in applying to general wave energy. However, recently this method has been extended and applied to the S wave energy successfully. This study applied the method to S wave and Coda wave energy, which is equivalent to the backscattered S wave energy. We used more than 60 observed ground motions from 5 earthquakes which were occurred recently, with magnitude range from 3.6 to 5.1. Each station showed characteristic site amplification property in low-, high- and resonance frequencies. Some of the stations showed as high as 4 times of site amplification in the range of specific frequencies, which may imply abnormal small scale geologic strata below the station or development of various trapped modes in the basin structure. Moreover, removal of site amplification can give us more reliable seismic source and attenuation parameters, addition to the seismic hazard estimation.

Resonances of Unconstrained Compressive, Shear and Flexural Waves in Free-Free Cylinder Specimens (자유단 공시체에 있어서 압축파, 전단파, 휨파의 공진특성)

  • Park, Byoung-Sun;Joh, Sung-Ho;Lee, Sang-Heon;Kang, Tae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.582-589
    • /
    • 2006
  • Shear wane velocity is important property for grasping the dynamic characteristics of material. It is has been used in various fields such as non-destructive testings of structures, seismic analysis of geotechnical structures and maintenance of concrete structure, and etc. Usually, shear wave velocities of rock cores and concrete cylinders are determined by free-free resonance tests, Shear wave measurement in free-free resonance tests is not straightforward, as compared with rod wave and flexural wane measurements. In This study, a new technique using resonance features of flexural and shear waves were proposed in which the nodal points for the fundamental mode of flexural waves were employed to generate and measure the shear waves with the flexural waves minimized. The real measurements for aluminum cylinders proved validity and reliability of the proposed algorithm. In addition to the proposed algorithm, the effects of material properties on elastic-wave velocities in resonance measurements were also studied. In summary, a new framework of the resonance measurements for shear-wave velocity determination was established, based on the results of this thesis.

  • PDF