• Title/Summary/Keyword: Rock condition

Search Result 906, Processing Time 0.026 seconds

A Study on the Failure Characteristics for the Rock Slopes (Centering Around Jungang Highway) (암반사면의 붕괴특성에 관한 연구(중앙고속도로를 중심으로))

  • Kim, Jong-Ryeol;Lee, Jin-Su;Hwang, Pung-Ju;Lee, Yong-Hee
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.765-776
    • /
    • 2005
  • As a result of industrial advancement and land development, a number of highway slopes have been gradually formed and numerous problems related to their stability have been frequently caused. Generally, major factors for rock slope stability are lithology, slope inclination, slope height, degree of weathering, precipitation, condition of groundwater and so onl. Many complex factors are mostly involved in the collapse of rock slopes. In this study, a database for 94 collapsed Jungang highway slopes were set up using GIS program through literature search, site investigation, geological map and Korea tectonic province map. The analyses for the collapsed factor including sort of rock(by origin), tectonic province, highway direction, slope gradient and direction, degree of weathering, slope height were carried.

  • PDF

Structural Safety Analysis of Newly Developed Roof-Typed Falling Rock Protection System (루프형 낙석방지안전시설의 구조적 안전성 검토 연구)

  • Park, Cheol-U;Lee, Hak-Yong
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.50
    • /
    • pp.84-96
    • /
    • 2009
  • Road is typically constructed along ridge area of mountain because of topographical and economic reasons. Therefore, road may face lots of open cut slope which can easily cause rock falling. This study evaluates the structural safety of newly developed falling rock protection system which has a roof deck plate. The structural performance under self-weight, snow load and load from failing rock was investigated using a finite element numerical analysis method. From the analysis results, the H-beam space was limited not to exceed 2.2m. The deck plate was also safe under the examined loading condition. A hinge and connection in the system were investigated through detailed modelling and analysis. The results showed that the hinge was safe enough and that the connection should strengthened with appropriate stiffeners.

  • PDF

Current Status of Research on Thermal and Mechanical Properties of Rock under High-Temperature Condition (고온 조건하 암석의 열적·역학적 물성에 대한 연구현황)

  • Lee, Changsoo;Park, Jung-Wook;Park, Chulwhan;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.1
    • /
    • pp.1-23
    • /
    • 2015
  • In this technical report we summarize the observational data on thermal and mechanical properties of rocks reported by over 70 best published papers. The experimental results reported individually are integrated and presented in tables and figures here, which will provide fundamental data to fairly determine and evaluate the rock properties at the initial design stage of underground structures exposed to high temperature environment.

Structural Safety Analysis of Newly Developed Roof-Typed Falling Rock Protection System (루프형 낙성방지안전시설의 구조적 안전성 검토 연구)

  • Park, Cheol-Woo;Lee, Hak-Yoog
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.47-53
    • /
    • 2009
  • Road is typically constructed along ridge area of mountain because of topographical and economic reasons. Therefore, road may face lots of open cut slope which can easily cause rock falling. This study evaluates the structural safety of newly developed falling rock protection system which has a roof deck plate. The structural performance under self-weight, snow load and load from falling rock was investigated using a finite element numerical analysis method. From the analysis results, the H-beam space was limited not to exceed 2.2m. The deck plate was also safe under the examined loading condition. A hinge and connection in the system were investigated through detailed numerical modelling and analysis. The results showed that the hinge was safe enough and that the connection should strengthened with appropriate stiffeners.

A Study of Improvement Method and Analysis of Type of Revegetation Measures of Rock Slopes (비탈면 녹화공법의 유형분석과 개선방안 연구)

  • Jeon, Gi-Seong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.5
    • /
    • pp.22-29
    • /
    • 2002
  • This study was conducted to suggest develop revegetation methods and to classification of cutting-rock slopes revegetation type. The data was collected from pre-experienced data, reports and journal. Also research result was reflected from field research for the conditions of construction, vegetation types and field conditions. As the result of analyze, the factors affecting the plant coverage rates of cutting-rock slopes were period of construction, revegetation methods, slope gradient and slope length. Classification of cutting-rock slopes revegetation type was fourth from material of revegetation measures and spray type. It is recommended to adjust the proposed factor as environment, field condition and characteristic related with revegetation measures on slopes for the presentation of revegetation standard.

Reliability-based Optimization for Rock Slopes

  • Lee, Myung-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.05a
    • /
    • pp.3-34
    • /
    • 1998
  • The stability condition of rock slopes is greatly affected by the geometry and strength parameters of discontinuities in the rock masses. Rock slopes Involving movement of rock blocks on discontinuities are failed by one or combination of the three basic failure modes-plane, wedge, and toppling. In rock mechanics, practically all the parameters such as the joint set characteristics, the rock strength properties, and the loading conditions are always subject to a degree of uncertainty. Therefore, a reasonable assessment of the rock slope stability has to include the excavation of the multi-failure modes, the consideration of uncertainties of discontinuity characteristics, and the decision on stabilization measures with favorable cost conditions. This study was performed to provide a new numerical model of the deterministic analysis, reliability analysis, and reliability-based optimization for rock slope stability. The sensitivity analysis was carried out to verify proposed method and developed program; the parameters needed for sensitivity analysis are design variables, the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and rock slope geometry properties. The design variables to be optimized by the reliability-based optimization include the cutting angle, the support pressure, and the slope direction. The variability in orientations and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a greatly influenced on the rock slope stability. The stability of rock slopes considering three basic failure modes is more influenced by the selection of slope direction than any other design variables. When either plane or wedge failure is dominant, the support system is more useful than the excavation as a stabilization method. However, the excavation method is more suitable when toppling failure is dominant. The case study shows that the developed reliability-based optimization model can reasonably assess the stability of rock slopes and reduce the construction cost.

  • PDF

Centrifuge modelling of rock-socketed drilled shafts under uplift load

  • Park, Sunji;Kim, Jae-Hyun;Kim, Seok-Jung;Park, Jae-Hyun;Kwak, Ki-Seok;Kim, Dong-Soo
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.431-441
    • /
    • 2021
  • Rock-socketed drilled shafts are widely used to transfer the heavy loads from the superstructure especially in mountainous area. Extensive research has been done on the behavior of rock-socketed drilled shafts under compressive load. However, little attention has been paid to uplift behavior of drilled shaft in rock, which govern the overall behavior of the foundation system. In this paper, a series of centrifuge tests have been performed to investigate the uplift response of rock-socketed drilled shafts. The pull-out tests of drilled shafts installed in layered rocks having various strengths were conducted. The load-displacement response, axial load distributions in the shaft and the unit skin friction distribution under pull-out loads were investigated. The effects of the strength of rock socket on the initial stiffness, ultimate capacity and mobilization of friction of the foundation, were also examined. The results indicated that characteristics of rock-socket has a significant influence on the uplift behavior of drilled shaft. Most of the applied uplift load were carried by socketed rock when the drilled shaft was installed in the sand over rock layer, whereas substantial load was carried by both upper and lower rock layers when the drilled shaft was completely socketed into layered rock. The pattern of mobilized shaft friction and point where the maximum unit shaft friction occurred were also found to be affected by the socket condition surrounding the drilled shaft.

Numerical simulation and countermeasure on upheaval generation in the road caused by sliding of a slope (사면활동으로 야기된 도로부 융기발생에 대한 수치해석 및 고찰)

  • Kim, Seung-Hee;Rhee, Jong-Hyun;Koo, Ho-Bon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.833-841
    • /
    • 2008
  • Recently, the upheaval generation in the road which is under service had been reported. Due to the upheaval generation, total 4 lanes were forced to curtail to 3 lanes, and traffic was delayed. In normal situation of cut-slopes in korea, that condition is hard to detect since most cut-slopes contain discontinuous material, that is rock. Common collapses in rock-slopes is wedge failure, plane failure and toppling failure which is all individual mechanism of discontinuous rock mass. In contrast, such upheaval in the road in front of cut-slope can be generated only when circular movement is triggered within the cut-slope. In this sense, rock-slopes barely show any kind of movement in the road locates at the front of them. Numerical analysis is general method in simulation of slope displacement and evaluation of safety. However, numerical analysis programs which are related with rock-slopes are not able to simulate such upheaval movement because that programs are based on discontinuous modeling mechanism. In addition, although numerical analysis programs which are based on FEM/FDM and thus utilize continuous modeling mechanism are able to simulate circular movement and upheaval situation, they have weakness in reflecting discontinuities of rock-slope itself. In this study, detailed in-site investigation and numerical analysis based on in-site condition were performed in order to expect upheaval movement in the road. In this procedure, the FLAC program which uses continuous modeling method was utilized, and new approach reflecting discontinuity developed toward the road with a ubiquitous joint model was tried to derive reliable analysis result.

  • PDF

Analysis of Influence factors to Compressive and Tensile Strength of Basalt in Cheju Island (제주도 현무암의 압축 및 인장강도에 대한 영향요인 분석)

  • Nam, Jung-Man;Yun, Jung-Mann;Song, Young-Suk;Kim, Jun-Ho
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.215-225
    • /
    • 2008
  • In order to investigate the influence factors to compressive and tensile strength of basalt in Cheju Island, rock samples of Pyosenri basalt, trachy-basalt and scoria were taken from Seoguipo-Si Seongsan-Eup area, and a series of uniaxial compressive strength test and Brazilian test were carried out. Especially, these tests were performed in consideration of the loading speed, the moisture content in rock sample, and the anisotropy of rock strength. The uniaxial compressive strength was increased gradually as the loading speed rose. The increasing quantity of uniaxial compressive strength had a difference in each rock types. Also, the strength was decreased with increasing the moisture contents in rock sample by pore water. As the result of test considering the anisotropy of rock strength, the compressive strength in condition of failure occurred parallel to stratified layer is decreased about 12-26% more than that in condition of failure occurred inclined to stratified layer.

Norwegian Rock Excavation Technology (노르웨이의 암석굴착 기술)

  • 김민규
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.544-552
    • /
    • 2000
  • Norway has the geological of condition of hard bedrocks, high mountains, deep valleys and fjords. In this background many tunnels and rock caverns are developed. In this process of constructing tunnels and rock caverns Norway seems to have strong competitiveness in the construction of tunnels. In spite of high salaries to the tunnel workers, Norwegian contractors are probably producing the cheapest tunnels and rock caverns in the world. Besides benefit of hard-rock geology, Norwegian cost-saying is owing to the Norwegian excavation technique in hard rocks such as unlined pressure tunnels, air cushion chambers, underwater piercing, and reasonable contract system and organization of workers developed from the accumulated experience. Brief analytical description of them are given in this paper in order to stimulate the utilization of the underground spaces.

  • PDF