• Title/Summary/Keyword: Robust nonparametric regression

Search Result 10, Processing Time 0.017 seconds

Robust Nonparametric Regression Method using Rank Transformation

    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.574-574
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

Robust Nonparametric Regression Method using Rank Transformation

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.575-583
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

  • PDF

Nonparametric M-Estimation for Functional Spatial Data

  • Attouch, Mohammed Kadi;Chouaf, Benamar;Laksaci, Ali
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.193-211
    • /
    • 2012
  • This paper deals with robust nonparametric regression analysis when the regressors are functional random fields. More precisely, we consider $Z_i=(X_i,Y_i)$, $i{\in}\mathbb{N}^N$ be a $\mathcal{F}{\times}\mathbb{R}$-valued measurable strictly stationary spatial process, where $\mathcal{F}$ is a semi-metric space and we study the spatial interaction of $X_i$ and $Y_i$ via the robust estimation for the regression function. We propose a family of robust nonparametric estimators for regression function based on the kernel method. The main result of this work is the establishment of the asymptotic normality of these estimators, under some general mixing and small ball probability conditions.

ROBUST REGRESSION SMOOTHING FOR DEPENDENT OBSERVATIONS

  • Kim, Tae-Yoon;Song, Gyu-Moon;Kim, Jang-Han
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.345-354
    • /
    • 2004
  • Boente and Fraiman [2] studied robust nonparametric estimators for regression or autoregression problems when the observations exhibit serial dependence. They established strong consistency of two families of M-type robust equivariant estimators for $\phi$-mixing processes. In this paper we extend their results to weaker $\alpha$$alpha$-mixing processes.

Robust Interpolation Method for Adapting to Sparse Design in Nonparametric Regression (선형보간법에 의한 자료 희소성 해결방안의 문제와 대안)

  • Park, Dong-Ryeon
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.3
    • /
    • pp.561-571
    • /
    • 2007
  • Local linear regression estimator is the most widely used nonparametric regression estimator which has a number of advantages over the traditional kernel estimators. It is well known that local linear estimator can produce erratic result in sparse regions in the realization of the design and the interpolation method of Hall and Turlach (1997) is the very efficient way to resolve this problem. However, it has been never pointed out that Hall and Turlach's interpolation method is very sensitive to outliers. In this paper, we propose the robust version of the interpolation method for adapting to sparse design. The finite sample properties of the method is compared with Hall and Turlach's method by the simulation study.

On a Nonparametric Test for Parallelism against Ordered Alternatives

  • Song, Moon Sup;Kim, Jaehee;Jean, Jong Woo;Park, Changsoon
    • Journal of Korean Society for Quality Management
    • /
    • v.17 no.2
    • /
    • pp.70-80
    • /
    • 1989
  • A nonparametric test for testing the parallelism of regression lines against ordered alternatives is proposed. The proposed test statistic is based on a linear combination of robust slope estimators. It is a modified version of the Adichie's test statistics based on scores. A snail-sample Monte Carlo study shows that the proposed test is compatible with the Adichie's test.

  • PDF

A Nonparametric Test for the Parallelism of Regression Lines Based on Kendall's Tau (Kendall의 Tau에 의한 회귀직선의 평행성에 관한 비모수 검정)

  • Song, Moon-Sup
    • Journal of the Korean Statistical Society
    • /
    • v.7 no.1
    • /
    • pp.17-26
    • /
    • 1978
  • For testing $\beta_i=\beta, i=1,...,k$, in the regression model $Y_{ij} = \alpha_i + \beta_ix_{ij} + e_{ij}, j=1,...,n_i$, a simple and robust test based on Kendall's tau is proposed. Its asymptotic distribution is proved to be chi-square under the null hypthesis and noncentral chi-square under an appropriate sequence of alternatives. For the optimal designs, the asymptotic relative efficiency of the proposed procedure with respect to the least squares procedure is the same as that of the Wilcoxon test with respect to the t-test.

  • PDF

Robustness, Data Analysis, and Statistical Modeling: The First 50 Years and Beyond

  • Barrios, Erniel B.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.6
    • /
    • pp.543-556
    • /
    • 2015
  • We present a survey of contributions that defined the nature and extent of robust statistics for the last 50 years. From the pioneering work of Tukey, Huber, and Hampel that focused on robust location parameter estimation, we presented various generalizations of these estimation procedures that cover a wide variety of models and data analysis methods. Among these extensions, we present linear models, clustered and dependent observations, times series data, binary and discrete data, models for spatial data, nonparametric methods, and forward search methods for outliers. We also present the current interest in robust statistics and conclude with suggestions on the possible future direction of this area for statistical science.

Simultaneous outlier detection and variable selection via difference-based regression model and stochastic search variable selection

  • Park, Jong Suk;Park, Chun Gun;Lee, Kyeong Eun
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.2
    • /
    • pp.149-161
    • /
    • 2019
  • In this article, we suggest the following approaches to simultaneous variable selection and outlier detection. First, we determine possible candidates for outliers using properties of an intercept estimator in a difference-based regression model, and the information of outliers is reflected in the multiple regression model adding mean shift parameters. Second, we select the best model from the model including the outlier candidates as predictors using stochastic search variable selection. Finally, we evaluate our method using simulations and real data analysis to yield promising results. In addition, we need to develop our method to make robust estimates. We will also to the nonparametric regression model for simultaneous outlier detection and variable selection.

Regression diagnostics for response transformations in a partial linear model (부분선형모형에서 반응변수변환을 위한 회귀진단)

  • Seo, Han Son;Yoon, Min
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.1
    • /
    • pp.33-39
    • /
    • 2013
  • In the transformation of response variable in partial linear models outliers can cause a bad effect on estimating the transformation parameter, just as in the linear models. To solve this problem the processes of estimating transformation parameter and detecting outliers are needed, but have difficulties to be performed due to the arbitrariness of the nonparametric function included in the partial linear model. In this study, through the estimation of nonparametric function and outlier detection methods such as a sequential test and a maximum trimmed likelihood estimation, processes for transforming response variable robust to outliers in partial linear models are suggested. The proposed methods are verified and compared their effectiveness by simulation study and examples.