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ROBUST REGRESSION SMOOTHING
FOR DEPENDENT OBSERVATIONS

TAE YOON KM, GYU MOON SONG AND JANG HaN KM

ABSTRACT. Boente and Fraiman [2] studied robust nonparametric
estimators for regression or autoregression problems when the ob-
servations exhibit serial dependence. They established strong con-
sistency of two families of M-type robust equivariant estimators for
¢-mixing processes. In this paper we extend their results to weaker
a-mixing processes.

1. Introduction

For regression problem with serially dependent observations, various
nonparametric techniques have been used for recovering the unknown
regression function. Two most popular methods among them are ker-
nel and k-nearest methods, presented by Nadaraya [7] and Watson [10]
and by Collomb (3] respectively. Early results for this problem include
Collomb [3], Robinson [8] and Doukhan, Leon and Portal [6] as they
revealed asymptotic properties of the related estimators and predic-
tors. Evidently both of kernel methods and k-nearest kernel methods
are weighted averages of the response variables and therefore are highly
sensitive to large fluctuations in the data. Thus robust estimators ob-
tained via M-estimates have been considered by several authors. See
Robinson [9], Collomb and Hardle [4] and Boente and Fraiman [2]. In-
deed Robinson [9] adapted the robust M-estimators of a location pa-
rameter with kernel weights to time series model and established a cen-
tral limit theorem for such estimators when scale is known. A similar
approach was taken by Collomb and Hérdle [4] who established uni-
form convergence of this family of estimators for ¢-mixing processes.
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Later Boente and Fraiman [2] consider robust scale equivariant nonpara-
metric M-estimators based on kernel methods and k-nearest neighbor
kernel methods for which they obtain strong pointwise convergence for
¢-mixing processes. In this paper we follow the approach developed
by Boente and Fraiman [2] and extend their results to the weaker a-
mixing case. Indeed their strong consistency and asymptotically strong
robustness (ASR) is established when the underlying sequence exhibits
a-mixing.

Let {(X:,Y};) : t > p+1} be a strictly stationary process, X; € RP and
Y; € R. For z € RP let ¢(x) = E(Y;|X; = z). The Nadaraya-Watson
regression estimator is given by

T
¢r(z)= Y wr(x)Y,
t=p+1
where
th(w) = 'UJtT(l', Xp+17 s aXT)

(1.1) -
= K((X; ~2)/hr)/ > K((X,-1z)/hy),

T=p+1
with K a nonnegative integrable function on RP and hr > 0 which
can be also used for a p-th order autoregressive model, i.e., a strictly
stationary real valued process {Z; : t € N} satisfying

(1.2) Zy=g(X:) + e
where X; = (Zy—1,...,Zt—p), Yz = Z;, €, is independent of {Z;_1, Z;—2,
...} and E(e;) = 0.

To detail our robust problem let (X,Y) be a random vector with
the same distribution as (X, Y;). Then the robust conditional location

functional g(X) = E¥(Y|X) defined in Boente and Fraiman (1] is the
essentially unique o(X)-measurable function g(X) that verifies

(1.3) E{M(X)P[(Y — 9(X))/s(X)]} =0

for all integrable function h, where ¢(X) is the o-algebra generated by
X, s(X) is a robust measure of the conditional scale, e.g.,

(1.4) s(xz) = med(]Y — m(z)|) = MAD.(x),

m(z) = med(Y|X = z) is the median of a regular version F(y|X = z)
of the conditional distribution function and ¢ : R — R is a strictly
increasing, bounded and continuous function. When the distribution of
Y|X = z has half or more than half of its mass at one single point we
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redefine s(z) = 1. If the conditional distribution function F(y|X = z) is
symmetric around ¢(z) and v is odd, we have g(z) = ¢(z). Then, in this
sense, it is a natural extension of the conditional expectation E(Y|X).

In Theorem 2.1 of Boente and Fraiman [1], it was shown that the
solution of (1.3) exists, is unique and measurable. The weak continuity
of the functional so defined was proved in Theorem 2.2 there. Then we
obtain consistent and asymptotically strongly robust (ASR) estimates
of the autoregression function by applying the functional so defined to
estimates Fp(y|X = z) of F(y|X = z), verifying that Fr(y|X = z) —,
F(y|X =z) as T — oo a.s. (u), where —, stands for weak convergence
and p denotes the marginal distribution of the vector X. See Boente and
Fraiman (1] for detailed definition of ASR. Now we will consider the two
families of estimators of F(y|X = z) considered by Boente and Fraiman
[2].

1. Estimators based on kernel weights. These are defined by

T

(1.5) Fr(ylX ==z) = Y wir(z)la(Y2),
t=p+1

where A = (—o00,y]|, and I4 denotes the indicator function of the set A
and wyr is defined in (1.1).

2. Estimators based on k-nearest neighbor kernel methods. These
are defined by

T
(1.6) FrylX =z) = ) r(z)la(Ys),
t=p+1

where

th(x) = th(vap-f-l, reey XT)

T
= K((X; - )/Hr)/ Y K((X,-z)/Hr),
T=p+1

Hr is the distance between z and the k-nearest of x among Xp41,..., X7
and k = kr is a fixed integer. In particular, when K(t) = Ijy<1(2),
where || - || is any norm on RP, we obtain the uniform k — NN estimate.

Denote by sr(z) and $p(z) the scale measures corresponding to
Fr(y|X = z) and Fr(y|X = ), respectively as defined in (1.4). The
corresponding robust nonparametric estimates of g(z) are given by the
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unique solution of

T
(L.7) > wir $[(Ye — gr())/sr(2)] =0
t=p+1
and
T
(1.8) > ey P(Y: — gr(@))/57(x)] = 0.
t=p+1

2. Main results

Before stating the main results, the following set of assumptions are
listed.

Al. ¢ : R — R is a strictly increasing, bounded and continuous
function such that lim, e ¥(u) = a > 0 and lim,—,_o Y (u) = b < 0.

A2. Either of the following statements holds.

(a) s(x) is given by a functional which is weakly continuous at F', for
almost all z.

(b) % is odd and F(y|X = z) is symmetric around g(z) and a con-
tinuous function of y for each fixed .

H1. The process {(X;,Y;) : ¢ > p + 1} is an a-mixing, i.e. there
exists a non-increasing sequence of numbers {a(n) : n € N} with
limy, o0 @(n) = 0 such that for any integer n,

|P(AN B) — P(A)P(B)| < a(n),

where A € M},,, B € M2, and M is the o-field generated by the
random vectors {(X;,Y:) : u < t < v}. We also assume: the mixing
coeflicients decay algebraically fast, i.e., there exist w > 1 and a > 0
such that a(n) < an™™.

H2. K : RP — R is a bounded nonnegative function satisfying

aljy)<r(uv) < K(u) for some a >0, r >0,

aH(||u ) £ K(u) <aH(|| ul),

where a1 and ay are positive numbers and H : Rt — R* is bounded,
decreasing and such that tPH(t) — 0 as t — oo.
H3. The sequences {hr : T' € N} is such that

hr — 0 and ThE. — 0o as T — oc.
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H4. Let hy ~ T79 for some § > 0. Then there exists a positive
integer [ < w such that

(2.1) 0<6<(1-1/0)/[p(1+1/w)].

THEOREM 2.1. Assume Al, A2 and H1-H4 hold. Then we have
(a) gr(z) — g(z) a.s. as T — oo for almost all x(u).
(b) gr(zx) is asymptotically strongly robust (ASR) at p.

REMARK 2.1. Recall that Theorem 2.2 of Boente and Fraiman [1]
entails that Theorem 2.1 above is a consequence of the almost every-
where weak convergence of Fr(y|X = z) to F(y|X = x) established in
Theorem 3.1 below. Boente and Fraiman [2] have obtained their consis-
tency results for geometric a-mixing in which they require A7 to satisfy
T4 (hE.)A+9/4 /log T — oo for some & > 0 as T — oo. Then assuming
hr ~ T¢ their result reduces to # < 1/[p(1 + §)]. In the meantime
since we may take w = oo and then let { — oo in (2.1) for the geometric
o-mixing, our result could give a weaker condition on the bandwidth
selection, i.e., 0 < 8 < 1/p.

REMARK 2.2. One may give a sufficient condition for (2.1) to hold.
Indeed one may show that if

96p

73— )2

then (2.1) hold. This reveals an interesting relationship between the
dependence structure and the rates of convergence of hy. In fact, a
small 0 satisfying 8p < 1 produces a small w while a large 6 produces a
large w. Remember w is the exponent of the mixing coefficients. In other
words, we need to let A — 0 more slowly as the dependence becomes
severe. This makes sense because for the severely dependent data, each
data point itself may not be reliable but a group of data close in distance
may be more reliable.

As noted by Boente and Fraiman [2], our results do not require any
restriction on the probability distribution u of the vector X. Hence the
result obtained are robust and distribution-free in the sense that they
are true for all p.

For the case of the k-nearest neighbor kernel methods, we will replace
H2, H3 and H4 by the following assumptions.

B1. The vector X has a density f(z). K : RP — R is a bounded
nonnegative function, [ K(u)du =1 and K(u) < cilfju)<r) ().

B2. The sequence {kr : t € N} satisfies ky — oo and kr/T — 0 as
T — oo.

(2.2) w
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B3. Let kp ~ T for some 0 < v < 1. Then there exists a positive
integer | < w such that

(2.3) 1A/l +1/w)/(1+1/w) < 7.
B4. K(uz) > K(z) for all u € (0,1).

THEOREM 2.2. Under Al, A2, H1 and B1-B4 we have that:
(a) gr(x) — g(x) a.s. as T — oo for almost all x(p).
(b) gr(x) is ASR at p.

REMARK 2.3. As for the kernel weights estimators, the above result
follows from the almost everywhere weak convergence of Fir(y|X = z)
to F(y|X = x) established in Theorem 3.2 below. Since fp = 1 — v,
discussions in the remarks 2.1-2.2 may be adjusted in obvious way. For
example, one may deduce (2.3) from (2.1) using p = 1 —+. In a similar
fashion, one may easily notice that for the same geometric a-mixing,
taking w = oo and then letting [ — oo reduces (2.3) to v > 0, while
Boente and Fraiman [2] leads to v > & for some ¢ > 0. Also for (2.3) to
hold one may provide a sufficient condition

91 -7
> 7
Since a small v < 1 yields a large w above, similar observations can be
made about the convergence rate on k7 in the k-nearest kernel methods.

3. Estimating the conditional distribution function

In this section we will study the strong consistency of Fr(y|X = z)
and Fp(y|X = z), defined by (1.5) and (1.6) respectively.
Given a Borel set A C R we denote by ¢r(z) and ¢(z) the function

T
¢r(z) = > wr(z)la(Ys),
t=p-+1
¢(z) = E(Ia(Y)|X = ),

where wyr is defined in (1.1).

THEOREM 3.1. Assume HI1-H4. Then:

(i) ¢r(z) — ¢(z) a.s. for almost all x.

(ii) im7 oo sup, |Pr(y|X = z) — F(y|X = )| = 0 a.s. for almost all
z.
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PROOF. (i) According to Boente and Fraiman (2], the verification of
(i) will be complete if we show that

(3.1) = Z (pr — E(qir)) = —= — 0as. as T — o0
T i
where x x
-z -
mr = K(=—)/ar and ar = EK(~—).

For the verification of (3.1), we will use the following moment bounds
due to Cox and Kim (1994).

LEMMA 3.1. Let £(t) be a strong mixing process. Let | be a positive
integer and assume E£(t) = 0, and that for some q > 2

(32) My =sup{] §(0) ) = sup{(BlEIMY @) < 1.

Suppose further that there is a constant v not depending on t such that
E¢@®IF <v, 2<k<2L

Finally, assume that the mixing coefficients satisfy

le 12/q<oo

Then there exists a constant C' depending on ! but not depending on
the distribution of {(t) nor on v, n, nor P such that

E[(if(l))m] < C{nrMZZ z ll 1 1 —-2/q + Zn]]_ﬂl ]VJ}

=1 j=1
for any integers n and P with 0 < P < n.

Let £(t) = Ia(Y)K((X¢ — 2)/h) — EIA(Y})K((X; — z)/h). Then
E¢(t) = 0. Let [ be a positive integer to be determined. Then if 2 <
k<2,

E|¢t)|* < Car.
Similarly, one may show that for any ¢ > 2,
| £2) i< Cag™.

Thus, (3.2) will hold for T sufficiently large. Thus, we may apply Lemma
3.1 with » = Car, and then

E(Zg(l )21 <C|Ta 2/qzzl 1 1 2/q+ZT7PZl"7 j

i=1 j=1



352 Tae Yoon Kim, Gyu Moon Song and Jang Han Kim

For convenience, let s = 2/q so that 0 < s < 1. By Markov’s inequality
we obtain

S
pr=p(|3]> )scraT "B Y o
t=p+1

(3.3) < C(Tag)~ La(i)l=* + ZT’PQl"a
Now by (3.2),

o0

z il_la(’i)l_s < CPl—'w(l—s),

i=P
provided
(3.4) 0<P<T,
and
(3.5) w(l—s) > L.

Substituting this back into (3.3) yields

[4
pr < C(Tagp)™% | TT s Pw1-9) 4 ZTij—jan
j=1

1
(3.6) = O[T lap e pl—wi=9) 4 Z(T—lpa;l)ﬂ—j]‘
j=1
In the above one may easily see that the best choice for P will be ob-

tained by solving
a;2l+SPl—w(1-—s) — a;lpr,

which gives

(3.7 P= a;(l—s)/[w(l—S)]'

Clearly (3.4) holds by (3.5). When this is put back into (3.6) we obtain
pr < CT l(1+(l 5)/lw(1-s5)]) < CT (8, )—1 14-(I—s)/[w(l—s)])

(3.8) < CT—l(hp)—l(l-*"(l—S)/[w(l—S)]) < CT—l(T—ap)—l(1+(1—3)/[w(1—5)])

where S, is the closed ball of radius uh centered at z. The last result
follows from (H4) as hPuP/u(Syup) — (dA1/dp)(x), where A; is the p
absolutely continuous part of the Lebesgue measure on RP. Now our
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goal is to choose r and s so that ) ., pr < co. By a continuity argument
it will be sufficient to choose a positive integer [ such that

(3.9) rll —6p(l+1/w)] > 1

for then we make choose s > 0 sufficiently close to 0 to obtain (3.8).
Then (3.9) holds by H4 and (3.1) follows. Proof of (i) is complete.

(ii) Proof follows from (i) by an argument similar to the one used to
prove the Glivenko-Cantelli Theorem. O

THEOREM 3.2. Under H1 and B1-B4 we have that:

(i) ¢r(z) — ¢(z) a.s. for almost all x.

(ii) im0 sup, | Fr(y|X = x) — F(y|X = z)| = 0 a.s. for almost all
x.

Proor. We will just sketch the proof here because proof can be
done by proceeding exactly as in section 4.2 of Boente and Fraiman [2].
Indeed Lemmas 4.4 and 4.7 of Boente and Fraiman continue to hold
under the conditions of Theorem. And their Lemmas 4.5 and 4.6 may
be established by using our Lemma 3.1 above as in the proof of Theorem
3.1 which completes the proof. O
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