• 제목/요약/키워드: Robust PID Control

검색결과 216건 처리시간 0.027초

열차자동운전에 있어서 미지의 주행저항을 고려한 강인한 속도제어 (The Robust Speed Control on Automatic Train Operation Considering Unknown Running Resistance)

  • 변윤섭;왕종배;박현준
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권3호
    • /
    • pp.114-119
    • /
    • 2001
  • An automatic train operation(ATO) system executes the operation of constant speed travelling and fixed point parking by using microprocessors instead of driver's manual operation. This paper describes the mathematical model for the train considering unknown disturbances which consist of start resistance, travelling resistance, slope resistance, curve resistance, and so on. The speed controller of ATO system is designed by considering the disturbances. The simulation is executed to verify the speed control and fixed point parking performance and to compare its performance with that of a PID-type ATO control system under disturbances. Simulation results show that the control performance of gain scheduled control scheme for ATO system is better than that of the conventional PID controller.

  • PDF

하드 디스크 드라이브의 반복 추종 오차 제어 (Repetitive Control of Track Following Error in a Hard Disk Drive)

  • 전도영;정일용
    • 한국정밀공학회지
    • /
    • 제13권5호
    • /
    • pp.131-138
    • /
    • 1996
  • This paper suggests a servo control algorithm to reduce the repeatable tracking error which is not explicitly taken into account in the design of a conventional PID controller of a computer hard disk drive. The robust stability of the repetitive control system with multiplicative modelling error is analyzed, and the controller was implemented using a fixed point DSP(Digital Signal Processor). Experimental results show that the repetitive errors are suppressed effectively by the proposed controller.

  • PDF

RCGA에 기초한 선박 가스터빈 엔진용 PID 제어기의 동조 (RCGA-Based Tuning of the PID Controller for Marine Gas Turbine Engines)

  • 소명옥;정병건;진강규;진선호;이윤형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.116-123
    • /
    • 2005
  • The PID controllers have been widely accepted in many industrial systems due to their robust performance in a wide range of operating conditions and their functional simplicity To implement a PID controller, its three parameters must be determined for the given plant. Conventional tuning methods are mainly based on experience and experiment and are lack of systematic procedure Recently. to overcome drawbacks of conventional tuning methods, genetic algorithms have been used, In this paper a real-coded genetic algorithm is employed to search for the optimal parameters of the PID controller for speed control of marine gas turbine engines. Simulation results show the effectiveness of the proposed scheme.

PID 제어 기술을 이용한 비선형 유압 시스템의 강인 제어 (Robust Control of the Nonlinear Hydraulic Servo System Using a PID Control Technique)

  • 유삼현;이종원
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.850-856
    • /
    • 2001
  • Even though the hydraulic servo system has been widely used in industrial and military equipments since it has a lot of advantages, it is not easy to design controller due to the high nonlinearities and the parametric uncertainties. The dynamic behavior of the real process in the hydraulic servo system differs from that described by its model because the model is linearized. Another reason of the difference is caused by the variety of parameters, since the system parameters of the dynamic equation are affected by the operating conditions such as temperature and pressure. In this study, the designing process of the MRNC with a PID compensator is introduced and applied to the load sensing hydraulic servo system. The results show that the designed controller guarantees the robust control performance despite of both the nonlinearities and the parametric uncertainties.

Robust Control of Current Controlled PWM Rectifiers Using Type-2 Fuzzy Neural Networks for Unity Power Factor Operation

  • Acikgoz, Hakan;Coteli, Resul;Ustundag, Mehmet;Dandil, Besir
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.822-828
    • /
    • 2018
  • AC-DC conversion is a necessary for the systems that require DC source. This conversion has been done via rectifiers based on controlled or uncontrolled semiconductor switches. Advances in the power electronics and microprocessor technologies allowed the use of Pulse Width Modulation (PWM) rectifiers. In this paper, dq-axis current and DC link voltage of three-phase PWM rectifier are controlled by using type-2 fuzzy neural network (T2FNN) controller. For this aim, a simulation model is built by MATLAB/Simulink software. The model is tested under three different operating conditions. The parameters of T2FNN is updated online by using back-propagation algorithm. The results obtained from both T2FNN and Proportional + Integral + Derivate (PID) controller are given for three operating conditions. The results show that three-phase PWM rectifier using T2FNN provides a superior performance under all operating conditions when compared with PID controller.

Evolution Strategy를 이용한 강인한 PID 자동동조에 관한 연구 (A Study on Auto-Tuning of Robust Pill using Evolution Strategy)

  • 배근신;김성훈;이영진;이권순
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1110-1112
    • /
    • 1996
  • In this paper, we propose a new approach for robust auto-tuning of PID gains using Evolution Strategy. Evolution Strategy is searching algorithm which imitate the principles of natural evolution as a method to solve parameter optimization problem and easy to use without any other special mathematical theory. Through the simulation of the speed control of a series-connected de motor, our proposed method shows more improved performance by finding optimal parameters of PID controller than a classical Ziegler-Nichols method.

  • PDF

Robust sliding mode control for a USV water-jet system

  • Kim, HyunWoo;Lee, Jangmyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.851-857
    • /
    • 2019
  • A new robust sliding mode control with disturbance and state observers has been proposed to control the nozzle angle of a water-jet system for a Unmanned Surface Vehicle (USV). As the water-jet system of a ship is subjected to direct disturbances owing to the exposure to the marine environment in water, it requires a robust control. A state observer and a disturbance observer are added to the water jet nozzle control system to achieve a robust control against disturbances. To verify the performance of the proposed algorithm, a test bed is constructed by a propulsion system used in the popular USV. This proposed algorithm has been evaluated by comparing to the existing algorithm through experiments. The results show that the performance of the proposed algorithm is better than that of the conventional PID or sliding mode controller when controlling the steering of the USV with disturbances.

Application to Speed Control of Brushless DC Motor Using Mixed $H_2/H_{\infty}$ PID Controller with Genetic Algorithm

  • ;;;;김상봉
    • 한국해양공학회지
    • /
    • 제22권4호
    • /
    • pp.14-19
    • /
    • 2008
  • This paper proposes a mixed $H_2/H_{\infty}$ optimal PID controller with a genetic algorithm based on the dynamic model of a brushless direct current (BLDC) motor and applies it to speed control. In the dynamic model of the BLDC motor with perturbation, the proposed controller guarantees arobust and optimal tracking performance to the desired speed of the BLDC motor. A genetic algorithm was used to obtain parameters for the PID controller that satisfy the mixed $H_2/H_{\infty}$ constraint. To implement the proposed controller, a control system based on PIC18F4431 was developed. Numerical and experimental results are shown to prove that the performance of the proposed controller was better than that of the optimal PID controller.

온라인 자기동조 퍼지 PID 제어기 개발 (The development of an on-line self-tuning fuzzy PID controller)

  • 임형순;한진욱;김성중
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.704-707
    • /
    • 1997
  • In this paper, we present a fuzzy logic based tuner for continuous on-line tuning of PID controllers. The essential idea of the scheme is to parameterize a Ziegler-Nichols-like tuning formula by a singler parameter .alpha., then to use an on line fuzzy logic to self-tune the parameter. The adaptive scaling makes the controller robust against large variations in parametric and dynamics uncertainties in the plant model. New self-tuning controller has the ability to decide when to use PI or PID control by extracting process dynamics from relay experiments. These scheme lead to improved performance of the transient and steady state behavior of the closed loop system, including processes with nonminimum phase processes.

  • PDF

설계사양을 고려한 AVR 시스템의 PSO 기반 PID 제어기 (PSO-Based PID Controller for AVR Systems Concerned with Design Specification)

  • 이윤형
    • 한국산학기술학회논문지
    • /
    • 제19권10호
    • /
    • pp.330-338
    • /
    • 2018
  • 비례-적분-미분(PID) 제어기는 단순한 구조와 넓은 범위의 운전영역에서 견고한 성능으로 인해 산업계에서 널리 사용되고 있다. 그러나 제어대상으로서 AVR(Automatic Voltage Regulator)은 전력 시스템의 파라미터의 변동에 강인하지 않다. 따라서 PID 제어기를 사용하여 AVR 시스템의 안정성과 성능을 향상시키는 것이 필요하다. 본 논문에서는 PSO(Partial Swarm Optimization) 알고리즘을 사용하여 AVR 시스템을 위한 최적 PID 제어기 파라미터를 결정하는 새로운 설계 방법을 제시한다. 제안하는 접근법은 쉬운 구현뿐만 아니라 안정된 수렴 특성 및 양호한 계산 효율과 우수한 특성을 갖는다. 또한, 제안 된 PSO-PID 제어기의 성능을 평가하기 위해 새로운 목적함수를 정의한다. 이 목적함수는 최대백분율 오버슈트와 정정시간이 설계사양으로 주어진 경우 이를 반영하기 위한 것이다. 이를 위해 ITAE 평가함수에 제약 조건을 위반하면 벌점을 부과하도록 하여 PSO 알고리즘이 PID 제어기 파라미터를 탐색할 때 설계사양을 만족하도록 하게 한다. 최종적으로 컴퓨터 시뮬레이션을 통해 제안한 PSO-PID 제어기는 단자전압 계단응답에 대해 주어진 설계사양을 만족할 뿐만 아니라 다른 유사한 최근의 연구보다 더 우수한 제어 성능을 보임을 확인하였다.