• Title/Summary/Keyword: Robust Adaptive Control

Search Result 536, Processing Time 0.045 seconds

A Robust Adaptive Impedance Control Algorithm for Haptic Interfaces (강인적응 알고리즘을 통한 Haptic Interlace의 임피던스 제어)

  • Park, Heon;Lee, Sang-Chul;Lee, Su-Sung;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.393-400
    • /
    • 2002
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the fueling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/force commands, impedance parameters are always varying. When the impedance parameters between an operator and the haptic interface and the dynamic model are known precisely, many model based control theories and methods can be used to control the device accurately. However, due to the parameters'variations and the uncertainty of the dynamic model, it is difficult to control haptic interfaces precisely. This paper presents a robust adaptive impedance control algorithm for haptic interfaces.

Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method (상태 공간 기법을 이용한 원심압축기 공기 유량 모델 기반 적응 제어)

  • Han, Jaeyoung;Jung, Mooncheong;Yu, Sangseok;Yi, Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.8
    • /
    • pp.535-542
    • /
    • 2016
  • In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

Adaptive Predictive Control using Multiple Models, Switching and Tuning

  • Giovanini Leonardo;Ordys Andrzej W.;Grimble Michael J.
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.669-681
    • /
    • 2006
  • In this work, a new method of design adaptive controllers for SISO systems based on multiple models and switching is presented. The controller selects the model from a given set, according to a switching rule based on output prediction errors. The goal is to design, at each sample instant, a predictive control law that ensures the robust stability of the closed-loop system and achieves the best performance for the current operating point. At each sample the proposed control scheme identifies a set of linear models that best characterizes the dynamics of the current operating region. Then, it carries out an automatic reconfiguration of the controller to achieve the best possible performance whilst providing a guarantee of robust closed-loop stability. The results are illustrated by simulations a nonlinear continuous and stirred tank reactor.

New Robbt Force Control Technique for Deburring and Polishing Process (로봇의 디버링 작업이나 표면 광택작업을 위한 새로운 힘제어 기술 개발)

  • Jeong, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.9
    • /
    • pp.786-795
    • /
    • 2000
  • In this paper, a new impedance force control method for deburring and polishing process is proposed. The proposed method is robust to deal with unknown environment stiffness as unknown well as environment location. An adaptive technique is used to minimize the force error occurred due to unknown environment surface profile. A robust position control algorithm based on time-delayed information is used to cancel out uncertainties in robot dynamics. A three link robot manipulator is used to demonstrate performances of the proposed control on deburring and polishing tasks. Stability analysis for the adaptive control is presented and its results are confirmed by simulations.

  • PDF

An Estimation Approach to Robust Adaptive Control of Uncertain Nonlinear Systems with Dynamic Uncertainties

  • Ahn, Choon-Ki;Kim, Beom-Soo;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.54-67
    • /
    • 2003
  • In this paper, a novel estimation technique for a robust adaptive control scheme is presented for a class of uncertain nonlinear systems with a general set of uncertainty. For a class of introduced more extended semi-strict feedback forms which generalize the systems studied in recent years, a novel estimation technique is proposed to estimate the states of the fully nonlinear unmodeled dynamics without stringent conditions. With the introduction of powerful functions, the estimation error can be tuned to a desired small region around the origin via the estimator parameters. In addition, with some effective functions, a modified adaptive backstepping for dynamic uncertainties is presented to drive the output to an arbitrarily small region around the origin by an appropriate choice of the design parameters. With our proposed schemes, we can remove or relax the assumptions of the existing results.

Model Identification and Attitude Control Methodology for the Flexible Body of a Satellite

  • Lho, Young-Hwan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.3
    • /
    • pp.240-245
    • /
    • 2010
  • The controller of a model reference adaptive control monitors the plant's inputs and outputs to acknowledge its characteristics. It then adapts itself to the characteristics it encounters instead of behaving in a fixed manner. An important part of every adaptive scheme is the adaptive law for estimating the unknown parameters on line. A more precise model is required to improve performance and to stabilize a given dynamic system, such as a satellite in which performance varies over time and the coefficients change due to disturbances, etc. After model identification, the robust controller ($H{\infty}$) is designed to stabilize the rigid body and flexible body of a satellite, which can be perturbed due to disturbance. The result obtained by the $H{\infty}$ controller is compared with that of the proportional and integration controller which is commonly used for stabilizing a satellite.

Impedance Control of Backdrivable Hydraulic Actuation Systems with Explicit Disturbance Estimation (직접 외란 추정을 통한 역구동성 유압 구동 시스템의 임피던스 제어)

  • Yoo, Sunkyum;Chung, Wan Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.348-356
    • /
    • 2019
  • The backdrivable servovalve is a desirable component for force and interaction control of hydraulic actuation systems because it provides direct force generation mechanical impedance reduction by its own inherent backdrivability. However, high parametric uncertainty and friction effects inside the hydraulic actuation system significantly degrade its advantage. To solve this problem, this letter presents a disturbance-adaptive robust internal-loop compensator (DA-RIC) to generate ideal interactive control performance from the backdrivable-servovalve-based system. The proposed control combines a robust internal-loop compensator structure (RIC) with an explicit disturbance estimator designed for asymptotic disturbance tracking, such that the controlled system provide stable and ideal dynamic behavior for impedance control, while completely compensating the disturbance effects. With the aid of a backdrivable servovalve, we show that the proposed control structure can be implemented based on a simplified nominal model, and the controller enables implementation without accurate knowledge of the target system parameters and disturbances. The performance and properties of the proposed controller are verified by simulation and experiments.

Robust Adaptive Speed Controller for Induction Motors Using High Order Neural Network (고차신경망을 이용한 유도전동기 강인 적응 속도 제어)

  • Park, Ki-Kwang;Hwang, Young-Ho;Lee, Eun-Wook;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1507-1508
    • /
    • 2008
  • In this paper, we propose a direct robust adaptive backstepping speed controller for induction motors system. A robust adaptive backstepping controller is designed using high order neural networks(HONN), which avoids the singularity problem in adaptive nonlinear control. The stability of the resulting adaptive system with proposed adaptive controller is guaranteed by suitable choosing the design parameter and initial conditions. HONN are used to approximate most of uncertainties which are derived from unknown motor parameters, load torque disturbances and unknown nonlinearities. The applicability of the proposed scheme is tested simulation.

  • PDF

ROBUST ADAPTIVE CONTROLLER FOR ROBOT MANIPULATOR CONTROL (로보트 매니플레이터를 위한 강인한 제어기 설계에 관한 연구)

  • Ryoo, Kgi-Wung;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.456-461
    • /
    • 1989
  • In this paper, the robust adaptive controller for the accurate position control of the robot manipulator in discribed. The proposed controller has feedforward and feedback terms. To reduced the cumputation time, the inertia matrix is simlipied by diagonal matrix and the centrifugal and Colioris term and gravity term are assumed to be zero. The auxiliary signal is added in the controller. This signal improve convergence time of error. The simulation results show that the proposed method is applied to the real time control.

  • PDF

Robust Adaptive Controller for MIMO Nonsquare Nonlinear Systems Using Universal Function Approximators

  • Park, Jang-Hyun;Seo, Ho-Joon;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.40.4-40
    • /
    • 2001
  • This paper addresses the problem of designing robust adaptive output tracking control for a class of MIMO nonlinear systems which have different number of inputs and outputs The stability of the whole closed-loop system is guaranteed in the sense of Lyapunov and uniformly Itimately boundedness of the tracking error vector as well as estimated parameters are shown. In addition, we show that the restrictive assumptions on input gain matrix which is presumed in the past works can be eliminated by using proposed control law.

  • PDF