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An Estimation Approach to Robust Adaptive Control of Uncertain

Nonlinear Systems with Dynamic Uncertainties
Choon-Ki Ahn, Beom-Soo Kim, and Myo-Taeg Lim

Abstract: In this paper, a novel estimation technique for a robust adaptive control scheme is
presented for a class of uncertain nonlinear systems with a general set of uncertainty. For a class
of introduced more extended semi-strict feedback forms which generalize the systems studied in
recent years, a novel estimation technique is proposed to estimate the states of the fully nonlin-
ear unmodeled dynamics without stringent conditions. With the introduction of powerful func-
tions, the estimation error can be tuned to a desired small region around the origin via the esti-
mator parameters. In addition, with some effective functions, a modified adaptive backstepping
for dynamic uncertainties is presented to drive the output to an arbitrarily small region around
the origin by an appropriate choice of the design parameters. With our proposed schemes, we
can remove or relax the assumptions of the existing results.

Keywords: State estimation technique, dynamic uncertainties, adaptive backstepping, uncertain

nonlinear systems, unmodeled dynamics.

1. INTRODUCTION

Adaptive control of a class of nonlinear systems
has been given a lot of attention in control problems
in recent years [1,2]. Most research results in adaptive
nonlinear control were restricted to linearly pa-
rametrized and state feedback linearizable. A lot of
earlier problems were all restricted to systems satisfy-
ing the matching condition and over-parametrization.
One of the recent breakthroughs over-coming these
difficulties in adaptive nonlinear control is the intro-
duction of adaptive backstepping algorithms for feed-
back linearizable systems [3,4]. Marino and Tomei
[5-7] combined it with their filtered transformations
[8,9] to solve the adaptive output feedback problem
for a class of nonlinear systems that has not since
been enlarged.

Despite these advances in adaptive nonlinear con-
trol, most results deal with the case that all the
nonlinearities of a system are known. In practice, al-
most every physical system is subject to various
model uncertainties. Normally, the causes of model
uncertainties are unknown physical parameters, ex-
ternal disturbances, and imprecise modeling. In [5, 6],
a robust adaptive controller was constructed for sys-
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tems in which parameter uncertainties are usually
assumed to appear linearly with respect to (known)
nonlinear functions.

In addition to these uncertainties, some systems are
further subject to dynamic uncertainties that depend
on the unmeasured states of unmodeled dynamics
[10-14]. Practical examples are the dynamic friction
models in [15] and the eccentric rotors in [16]. In [10]
an adaptive controller was constructed for a class of
extended strict feedback forms in which the unmeas-
ured states enter the systems in a linear affine fashion.
As pointed out in [10], it is unclear how to achieve
robustness with respect to modeling errors such as
uncertain nonlinearities. In [11], a robust adaptive
control scheme was proposed using a dynamic domi-
nating signal to determine the size of dynamic uncer-
tainties. The result assumes that the unmodeled dy-
namics are ISpS (Input-to-State practically Stable).
Also, the backstepping method based on small-gain
arguments is presented assuming that the g-subsystem
is ISpS[12]). More recently, Xu and Yao also con-
structed an adaptive robust controller via an observer
for unmeasured states [13]. But the assumption of this
approach is that observer error dynamics is exponen-
tially ISS (Input-to-State Stable). In addition, the
backstepping scheme is presented under the stringent
assumption that the equilibrium point of an unmod-
eled dynamics is globally exponentially stable [14].

In this paper, we introduce a more extended semi-
strict feedback form which is a more general form
than the one studied in recent years. It has a general-
ized nonlinear unmodeled dynamics in contrast to [10,
13]. Note that the g-subsystem of this form has more
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inputs than the form in [11,12,14]. Unfortunately,
with the recent work, it is impossible to design a ro-
bust controller when the g-subsystem is only BIBS
(Bounded-Input Bounded State) stable and the fully
nonlinear system, and ¢ is unmeasured. However,

the proposed novel estimation technique can estimate
the states of an unmodeled dynamics under very mild
conditions. In estimator design, the introduction of
the @ function yields the complete elimination of
the effect of parametric uncertainties. In addition, by
the introduction of the g function, we can deal with
the uncertain nonlinearities very effectively. With
these functions, estimation error can be made as small
as desired by an appropriate choice of the estimator
design constants. Another novelty of this paper is the
introduction of the yfunction to handle dynamic un-
certainties effectively. With a combination of power-
ful functions, a modification of the adaptive back-
stepping scheme is proposed. Our presented scheme
can drive the output to an arbitrarily small region
around the origin by an appropriate choice of control-
ler design parameters. With these proposed schemes,
we can deal with a more general form and guarantee a
better performance, but we no longer require the
stringent assumptions of the existing results.

The main contributions of this paper are summa-
nized as follows: (1) The uncertain nonlinear systems
under consideration are subject to a general set of
uncertainty: parametric  uncertainties, uncertain
nonlinearities, and dynamic uncertainties. (2) In esti-
mator design, we introduce the @ function to elimi-
nate the effect of parametric uncertainties and the g
function to handle uncertain nonlinearities success-
fully. (3) In controller design, we introduce the ¥
function to deal with the effect of dynamic uncertain-
ties effectively. (4) With a novel estimation technique
and a proposed modified adaptive backstepping
scheme, we deal with a more general form and guar-
antee a better performance. (5) With these proposed
tools, we can remove or smooth the assumptions of
the existing studies.

The class of more extended semi-strict feedback forms
is described in Section 2. In Section 3, a novel estima-
ton technique is proposed to estimate the states of un-
modeled dynamics under very mild conditions. The sys-
tematic controller design method for dynamic uncertain-
ties is presented in Section 4. In Section 5, an overall
design method is illustrated for the example system, and
the simulation result is given. The conclusion is given in
Section 6.

2. PROBLEM FORMULATION

The class of nonlinear systems to be controlled in
this paper is a more extended semi-strict feedback
Jorm as follows:

§=Q(§’X|,x2’---’xi),

X =%, 460 0(x,...,x)+A,
(<i<i-1),

X =x, 40 @ (%, x)+ S WA, x)+A, (D)
(<i<n-1,

X, =ut+6' @ (X, X)W, (X)X, ) FA,

Yy =X,

4

where ue R, ye R are the control input and the
output, respectively, and x=(x, ...,x,) is part of the

measured states. ¢ € R” represents the unmeasured

state, and @ R” is a vector of uncertain constant

parameters. ¢ € R” and y,e R" are vectors of

known smooth functions. A, represent unknown

nonlinear smooth funct-ions such as disturbances and
modeling errors.

Throughout this paper, we need only the following
assumptions.

Assumption 1: The unmodeled dynamics g¢-
subsystem, with X, =(x,,...,x,) as the input and ¢
as the state, is bounded-input-bounded-state stable.

Assumption 2: For each 1<i<n, there exists an
unknown positive constant p, such that, for all

teR, seR",and xeR"
[A(t, 6, 0) 1€ p,d.(x,.%,,...,%,), )

where 6, is a known nonnegative smooth function.

The control objective in this paper is to construct a
robust adaptive nonlinear control law so that the output
y is driven to an arbitrarily small region around the

origin with exponential convergence rate while main-
taining a global uniform uvltimate boundedness of all
the signals and states in spite of various uncertainties.
Remark 1: (I) If there are no uncertain nonlinear-
rities (ie. A, =0,V,), system (1) with Assumption 1
and a special q-dynamic is the extended strict feed-
back form studied in [10]. Freeman and Kokotovic
constructed an adaptive controller for this system in
[10]. (ID If there are no dynamic uncertainties (i.e.
there are no unmeasured states ¢ ), system (1) with

the assumption of knowing the bounds of parameter
variations and uncertain nonlinearities reduces to the
semi-strict feedback form studied in [17,18]. Yao and
Tomizuka [17] also constructed an adaptive robust
controller for this system. (III) If the q-dynamic has
only one input, x,, and satisfies the Lipschitz func-
tion, then system (1) with a small modification was
considered in [11,12,14]. Jiang and his colleagues
also constructed an adaptive controller in [11,12,14]
under the assumption that the g-dynamic is ISpS. It
should be noted that this assumption is more stringent
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than our Assumption 1. (IV) If the g-dynamic is a
special form and the observer error dynamic is expo-
nentially ISpS, system (1) with the assumption of
knowing the bounds of parameter variations and un-
certain nonlinearities is the extended semi-strict feed-
back form considered in [13]. X, and Yao also con-
structed an adaptive robust controller for this system.

As seen in Remark 1, a class of more extended
semi-strict feedback forms is more general than the
systems considered in recent results. In spite of con-
sidering this general form, our assumptions are milder
than the previous research. It should be noted that we
can remove Assumption 2 and smooth Assumption 1
in [14], and also we can remove Assumption 3 and
smooth Assumption 1 in [13]. In addition, Assump-
tion 4.1 of [11] and Assumption 2 of [12] are relaxed
by our proposed scheme.

Remark 2: From Assumption 2, since p, is un-

known, we do not need to have prior knowledge of
the bounds of uncertain nonlinearities.

3. A STATE ESTIMATION OF UNMODELED
DYNAMICS

In this section, we estimate the unmeasured states
of an unmodeled dynamics via a proposed novel es-
timation technique. It will be shown that, in spite of
various uncertain terms, we can construct a robust
estimator. In estimator design, the g function is intro-
duced to handle uncertain nonlinearities. In addition,
we introduce the @ function to remove the effect of
parametric uncertainties. The proposed estimation
technique is based on the idea of introducing a state
transformation [19]. We introduce a nonlinear trans-
formation:

X =6 -0(x,....x)+0 @ (x,,...,x), 3)

where i=1..m, ¢={g,....¢,} € R", and @ (x,

X)ER, @(x,...,x,)e R" are smooth design func-
tions to be determined later. The time derivative of
%, 1s represented as

Fi=¢-a(x)+6"a(x)

_ L ow (X,
=qi(gi’xl)_zl a,;x[)(xj+1 +9T¢j +A])
= J
008 oy 675
ox,

4
=46 T)- Z .00 X

Jj=1

! Jw
'A +6"@ _2a W,

; axj a) (xl ) a gz Wh

Z lgz'/’u Z Wy

7 ox, Shox,

wherex, = (x,,...,x)€ R", ¢, =4,(¢,.%,) denotes the i-
th component of the function ¢=g(¢.X,) , and
y, represents the j-th element of function .

In this case, (4) is parametrized as follows :

. _ ow.
X, :—(ai +Ci)gi _g,-(-x/)g,' - l ¥
ox,
9w ’ Low
> Tk, +676)-> A, 5
;axj (X, +6"9,) ,?:,axj ) )

T ~ ,—
+8 @(x)+v,

where a, and ¢, are positive design constants, and
8:(x)20 1is a smooth design function to be deter-
mined later. The function v, is the modeling error
represented as

\4 =qi(g[’)?l)+{ai +¢; +g'(f1)}g
2 owm L ow (6)
S It ) PR

L
j=1 ax, j=i+l a
Since ¢, =y, -0 @ +a , we have

x,' :—(ai +Ci)li —((1 +C‘)wi —g,-(f,)(,l/,» +a):)
L, %

Wy ——a@.
ax1 Z i Wl i ax, ‘//[ i

i)

i

+
%
r—|
RSB
+
—
K]

+
OQ
o~

=|
~

+

n

+
5

e —t

_Z%@J-H)i. @)

If we choose @ to satisfy the equality

om }(b
a i i
K ®)

67),-+{a,-+g,-(f,

{

_2_¢ =0,
then, (7) becomes
) e L)
X, :—{a +e+g () +— o l/’n}(l. +a)

—Zaw’ Z 'A +v,.

I
=1 Ox; -

€))

It is interesting to note that, by the introduction of the
@ function, the effect of the parametric uncertainties
was eliminated from the y,-system (9)

Therefore, we introduce the following estimator:
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);ei :_{ai t¢+ gi(E)"’%V/ﬁ}(ii to)
X,

!
s,
- EW e
= ox,

Denoting the state estimation error by e, =7 — %,

from (9) and (10), we have the following error equation:
! a )

éi=_biei_ciei_gi()_cl)ei+zﬁAj_vi s (1n

‘o ox

(10)

j

where b, =a, + éEl)—”—l//,,.
ox,

chosentobe b >0.

and the design constant b, is

Since y =¢ —@ +0'@ , we can obtain the equiva-
lent representation of ¢ :

c=x-0@+w-e. (12)

Now, we are ready to state and prove the following
theorem.

Theorem 1: If we use estimator (10), the solution
of (11) satisfies the following properties as:

(1) e is globally uniformly ultimately bounded.

Q) le ISy exp(-b)+0Q, (=1,..,m), (13)
where
/M.
ﬂ[ :\/ Z[W(O)_p,]’ Q,' = _b—"a
M —Zi [ p? a4
. V. D
P 2b, " A4, ;419.].

W.(0) is the value of the i-th Lynapunov function at
initial time and v, =sup,,,, v,(#). In addition, k; is a
positive design constant.
Proof: Refer to Appendix L D
Under additional conditions, the exact regulation of
the estimation error to the origin can be achieved
without tuning the design constants appropriately.
Corollary 1: (Exact Regulation)
(1) If A, =0 for 1<i<l, there exist constants
TL,E such that

ﬂe,.(r)zdrsl'l+5 J‘Otv,.(r)zdr‘ (15)

(2) In addition, if v,(t)is square-integrable, then
lime, (1) =0. (16)

o0

Proof: Refer to Appendix II. [l
In vector notations, (12) becomes

c=F-@0+w—e, a7

where

g :[gl""’g/n]TG R’”,
/? :[IAI""’Z)”]T € R'"’
B=8,...a,1e R™,

o=[w ..o, R",

m

e=[e ...e,1" € R".

Remark 3: Note that the choice of function @,(%,)
is not unique. Since

10}
b=a+2%y >0, a>0. (18)
ox,
as long as i, is non-zero, nonlinear design function
w, can be explicitly constructed as follows:
W)= [y (19)
i o l//li (f,) 1
wherea, #b,.If ,is zero, then we have a, =b, >0
and w,(¥,) is any smooth function.

Remark 4: As seen in property (2) of Theorem 1,
if design constants «,, b,, ¢ k,.j,(i =1,---,m and
j=1,--,1) are chosen appropriately, then it is possi-
ble to make the estimation error e,(z) as small as

desired to any prescribed accuracy. Thus, we can
achieve the robust regulation of ¢, (¢) to a small re-

gion around the origin.

4. AMODIFICATION OF ADAPTIVE BACK-
STEPPING FOR DYNAMIC
UNCERTAINTIES

In this section, a modification of the adaptive back-
stepping methodology is proposed. We introduce 77, [

functions to handle uncertain nonlinearities and the
y function to deal with dynamic uncertainties effec-
tively. Since the first /-1 steps do not include the un-
measured state ¢, we will deal with the effect of
unmeasured state ¢ from step ! . Thus, we let
% =01<i< [-1.

Stepl:i=1

Let z,=x,z,=x,—¢ and A =A, ,where o =
o, —1,—7, . Since there is no effect of ¢ in Step 1,
we let ¥ =0and let 6=6-6,p =p, —p,. From
Assumption 2, A, satisfies |A I<pS , where
p.=p,, 6 =0 . Throughout this paper, ¢ repre-
sents the estimate of e.

From the above definition, we can obtain the follow-
ing:

Zi=z,+a,+0"¢(z)+A,. (20)
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Consider the following Lyapunov function

12 T—l
v=lpolorige s 21
297, 2rp1 @

where I is the positive definite matrix for design,
and 7 is a positive constant for design.

The time derivative of V, is given by

Vl =z(z,+ +éT¢l(zl)+Al)

+éTr-'é+rllfvl§1 -2,0"¢.(z). @2)
If the following are chosen as
o, =—kz, -0 4,(z)-1,, (23)
7, =Tlz,4,(z)—0,(0-8)], (24
p=nll ~0,(p~ BN, (25)

where k,0,,0,,p are positive design constants,
6° e R”, Te R” are positive definite matrices for de-
sign, and 7,,], functions are yet to be designed. It
can be shown that

Vi=22,-kz +4,8, -n)+ L +6'T"(@-1) (26)
-0,6 (6—-6")-0,5,(p,— P) -

Noting that 7,,/, are chosen as any smooth functions
satisfying the following two conditions

. - = D,
@ 7, (A, "771)_+ pl < E_: s @7
i —-zn <0,

where ¢, 1is a positive design constant and condition
(ii) is the passivity-like requirement not to interfere

with the nominal structure, by completing the square
as in [20}
—aﬁ’(é—e‘)):—%ag 161 —%0'9 19-6° 1

+%0'9I9—€° i (28)

—Glpl(pl—pf’)=—§01pf—561(p~p?)2
1
+EC71(P1 -p)). (29)

It can be shown that

; 12 2 =3
V< zz,—kz + ———0' 161 -
1 122 K4 g 2 6 2 o\

1 , 1 —_
+50'9 |9—90 | +EO'1([)1 —plo)z

+6'T (b1

<V, +22,+A4+0T@-1,), (30)

where

2’1 :%4"2—0-‘9 |0—90 |2 +—£O'1(ﬁ1_510)27

1

q 2k,,o,n, — %o _
ﬂmﬂx (r )

Remark 5: For example, we can choose 7 and !

31

functions as the following smooth functions
=528 + 557 32
77;—21171 1 +_4_Zl 1 ° ( )
L= 81212512 ’ (33)
where ¢ is a positive design constant.

. . = = 1
In this case, using 12,6, < 78] +—,
de,

ZI(ZI _771)‘}’;1[1 Slzlgllﬁl _Zlnl +1;)lll

= 2 £,Z ﬁ
_52 [t fnd 2.|__1 34
" (z,p, > ) 4, (34)
4¢,

Therefore, condition (i) of (27) is satisfied. Also,
since

1 26‘2

S = (35)

<0,

condition (ii) of (27) holds. Another selection is the

scheme of the tanh function. In addition, the Guderman-

nian function scheme can satisfy (i) and (ii) of (27).
Step 2: 2<i<!-1

Let z,=x«_,, where a_ =a,_,, —n_ -y Since

there is also no effect of ¢ in this step, we let

7., =0. If we let A =A — Z(—‘A ), then we

have 1A, € B,8.(%,...,x,).
Lemma 1: At step i, V2<i<[-1,we choose the
desired control function ¢, and the tuning as
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Jao,
+—=r, , 36
Y -1, (36)

L=Tn +inai ’ 37

_ i1 .
where ¢ =¢ —Z[%@J ,k, 1s a positive design
J= j

constant and 77, is the smooth design function.
If we choose the following adaptation law

po=rll—0.(5 - PO (38)

— =0 " -
.. 1, 0, p; are positive design

where ﬁizﬁi_p i
constants, and /is a smooth function for design, then

it can be shown that the time derivative of the
Lyapunov function candidate

1 1 Fad)
V=V, +5z5+2—ripf, (39)
satisfies
V<=V, +z Z,+1 +4
(40)
{Z A }(r 9),
where
Z—+— 160-6"F + Zaj(ﬁj -
j j=1
=z (41)
¢, =miny 2k, 0,1, ~—G—— >0,
ﬂ‘max (F )
and the i-th error subsystem is
. e 17 A
G =2, ~kz =z A, _%{_](H_fi)
(42)

-1, {sz —T- 9’}”

Note that the 7, and I functions are any smooth
robust control terms satisfying

. P

® z,(A, 77)+P,,—€,

i

(43)
@) -z £0.
Proof: Refer to Appendix III 0
Remark 6: For example, we can choose the 7,
and [, functions as the following polynomial func-
tions
2

p— £ —
m=2p0 +7'z,»6-2, (44)

| =€228°, 45)

where & is a positive design constant. From the
same method as in Remark 5, we can observe that
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conditions (i) and (ii) of (43) hold.

Step 3: i=!
From i=1, since there is the effect of unmeasured
state ¢, we introduce ¥ function to handle dy-

namic uncertainties. Using the equivalent expression
of ¢ (17), we will deal with system (1) effectively.

Let z,=x-a_ where o =a,, - 1n_-¥.,.1If

) a.x<

J

we let A, =A, - Z[ "Aj,thenwehave 1A, I<

ﬁ,é_‘,(xl,...,x,).
From the above definition and (17), we can obtain the
following:
4 =2, 1t +¢/T0+V/1Tg+At_dl-1
=z, +0,+9 0+y (-0 0+w—e)

+A,-¢,
d d X
—Z/+1+¢1 60— Z(i 0511 +_0il—]ﬁj:{
X 9p;
+Z,—ag{g' é+l//f(f{+w—e)+0{, (46)

where ¢ =@y, +4, —i[%@],

il ox;

If we choose the following:

.6, li’n-wﬁt»}?):_zz-l —kz,

Xrs
+r 9% g "
iy —=1- e/
< i+ Y I i

a 2 o da,_, A
+ l—l,z.[+z{axll j+l+alll—)/J

o (x,,.

0 | 5,
v -y, (@7)
7,=7_,+1z0, (48)

B=rnll,-0,(5,- B0, (49)

where p,=p,-p,, k., r, o, D’ are positive
design constants, and 77, and p are smooth design
functions, then it can be shown that

. -~ da_ i
L =2 —kZ,— 7, A, _T[AL(Q_Tr)_ﬂf =%

[Z Zjui ’r :ﬂ@ (50)

Consider the following Lyapunov function:

1 1 -
V/:VH+—2—Z,2+2—r[p,2. (51)

Using similar arguments developed in the previous
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subsections, it can be shown that

. y . 12
Vi=Va+zz +7P1P1 (52)

1
< : 2 1 0 12
_——ijzj+z,zm+—2—0'9|0—0 I
=1
13 2
+=> 0,(p,—-P) —-GHIGI
24
I¢- o, % T
_EZGJZJ +2, (A =1y, -y €

Il_

+ Dl +Z J +{Zz]+,

-6'T "}(r, 9)

Noting that 7,, 7, and [ are chosen as any smooth
functions satisfying the following two conditions

. -~ = p
®  zA-n-7 —W1T9)+ Pl < ?:"'812’ (53)

@) -z +y)<0,

where ¢ 1is a positive design constant and refers to

Remark 7 for ¢£,,, we can conclude that

122

V, <=V, +zz,+4

54
{Zz,ﬂ : e’r“Jw o Y
where
A= Z +E, +— aﬁ,m 6° 1
14 ”
*32.0/7
(55)

¢, =min{ 2k,, 0,7, ——&— 5 0,
Ao T7)

max

Remark 7: For example, we can select 7,, %, and
1, as follows:

2

M =2p0" +—Z,52 (56)
7, ly I

y=te, 57

L =625 (58)

In this case,

_l//[Te)"' ﬁll < Zlgl [ ﬁ/ -z,
-LY+ P/ ZzW/

g (Zz /o

=, = &2 | Y D 2
<-8%(z ”) L e 4t el
P 2 4g,

Pl
45.

+lel

P
<—+g,. 59
4z, (59)

From Theorem 1, there exists a small positive con-
stant, £, . Thus, condition (i) of (53) is satisfied. In

addition, since

2
) =L s '4"" <0, (60)

condition (ii) of (53) holds.
Step4: [+1<i<n-1
Let z,=x,—¢,_, where ¢ = (LR / S (B If we

_ =1 aa
let A=A - [—"‘AJJ , then we have

|A, € p.8,(x,....x) . In this subsection, let

Lemma 2: At step i, VI+1<i<n-1,we choose
the desired control function ¢, and the tuning function

as
o, (x,,....%,6,p,,. ’pl’l)_——zi—l_kizi

i2 Ja, o =
+ ZZ,'+1 éjr_er:l¢i_nf_}/i

=1 a
<[ 9 da,, 2 | da.
+ Xy +—=="p, |[+—=1,
= ij apj 1
v 17, w+Z aA Sag (61)
7,=17_,+I7% ¢,. , 62)

_ = 3
where ¢ =@y, +¢ —Z[%q)jj ,k, is a positive

=y 0
design constant, and 7,,%, are smooth design func-

tions for design. If we choose the following adapta-
tion law

B, =nll —0.(p, - BN (63)

where p, = p,~D,,,,0,, P, are positive design con-
stants, and [, function is a smooth design function,

then it can be shown that the time derivative of the
Lyapunov function candidate

1 1 =
V.=V_ +—z,2+——,2, 64
i i~ 2 i 27', pz ( )

i

satisfies

V -V +2z,z,, + 4

i+

[Z 2 —A—BTF‘ J(r,- -9),

(65)
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where

| [
X

L (66)
1 - - -
+5% 16-6° P +Ezlaj(pj =P
i
¢ =min{2k a,r,,——"”—-} >0,
max (F )
and the i-th error subsystem is
. -~ d A
4 =2, —kz— 2z A, _L:I(H_T[)_ﬂi -7
[Zzﬁ. —Ir- eT}b 7le. 67
In here, 7., 7, and [ functions are any smooth

robust control terms satisfying

@) Z(A -n-A- l//,e)+p”_

™ |"u|

27 (68)
(i) —Z,-(ﬂ,- + 7:) <0,

where ¢ is a positive design constant and we refer
to the similar argument of Remark 7 for ¢,

Proof: Refer to Appendix TV. O
Remark 8: For example, we can select 1,7 ,and

¢, as follows:
P
n = Zil_)izaiz +j—zi6fz , (69)
z ly, 2
V=T (70)
L=€2]6]. @y

[ R B |

By the same method as Remark 7, we can conclude
that the selected #,, y , and [ functions satisfy

conditions (i) and
(ii) of (68)
Step5: i=n

As the final step, by letting u = Lemma 2 ap-

n+1 ’
plies to Step n, Since u is the actual input, we can
choose it as

D X)

n=2
- n 1 k Z +|:ZZ/+1 j F 0T:|¢

u=a,(x,....x,,8,p,,

= 80{ A
/e 7n+2[ a]%”ﬂ‘ p/]
J

(72)

£ 9%, s Fo+3 ey,
ae n n e BZAJ i

n—1

where ¢, =@y, +9, Z( ],kn is a positive
x.
J

j=1
design function, and 7, and ¥, are smooth design
functions.
If we choose the following as in Lemma 2:

T, = +Tz, 6, (73)

nl

b, =nll, ~0,(5, - B (74)

where p,=p,-p,.r,,0,,p’ are positive design
constants, and the / function is a smooth design
function, then it can be shown that

V. <~V +4,
ol da, - A R
+ D) 2, —=-0'T" (1, -6),
Sesgr]
where
A =3P, £, Lo i-60r
=€ A 2
1 n
+=> 0,(p;-p,), (76)
2 Jj=1
¢, = min 2ki,0',r,,i i= 1,...,n} > 0.
A (T71)
If we choose the parameter adaptation law as
b=1,
W . an
=T\ Y 2,6,-0,(0-6%]|,
j=1
we can obtain
V.<—cV, +1,. (78)

Note that as 7,, 7,, and [, functions are any ro-

bust control terms satisfying

@) z,(A, =1, -y, -F.e)+pl,

(79)

n

(”) - Z" (nn + yn) S 0’

where £, is a positive design constant and refers to
the similar argument of Remark 7 for ¢,, we are

ready to state and prove the following main theorem.
Theorem 2: Consider system (1), Under Assump-

tions 1 and 2, if we apply control input (72), parame-

ter adaptation law (77), and the design procedure de-

veloped in the previous sections, then

(1) all signals are global uniform ultimate bounded,

(80)
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where

A, .. 24, .
o= k= [Py = V00 B

[

n n

and V (0)1s the value of the nth step Lyapunov

function at initial time.

Proof: Refer to Appendix V. 0

Remark 9: As in Remark 8, by substituting i=n
into (69)-(71), we can choose 177,,7,,and [ as

2

mo= 58 + 20,50 (82)
i PP

y, =t (83)

I =¢,7.5". (84)

By simple calculation, we can determine that the
above functions satisfy conditions (i) and (ii) of (79).
Under additional conditions, the exact regulation of
the output to the origin can be achieved.

Corollary 2: (Exact Output Regulation)
In addition to Assumptions 1 and 2, if A, =0 and

v,e L, (1<i<n) are satisfied, then we can find an
adaptive controller of form (72) with o,=0,=0
(1< j<n) such that the output y(r) satisfies

}irg y()=0. (85)

Proof: Refer to Appendix VL O
Remark 10: Theorem2 guarantees the bounded-
ness of z, (i=1,...,n). Thus, the boundedness of x,

(i=1, ...,n).is also guaranteed. From Assumption 1
and (6), it is noted that the function v, is also

bounded.

Remark 11: As seen in (76), (80), and (81), since
g, 0, 6,, k,, r, p’, 8°,and T are constants

i

for design, we can make y as small as desired and

thus achieve regulation to a small region around the
origin by an appropriate choice of design parameters.

Remark 12: Corollary 2 guarantees that, under ad-
ditional conditions, it is possible to achieve the exact
output regulation to the origin without tuning the de-
sign constants appropriately.

5. EXAMPLE

In this section, we illustrate the proposed design
scheme of the robust adaptive controller for uncertain
nonlinear systems. In order to demonstrate our
scheme, the simulation result is obtained for the fol-
lowing system:

§="§+x12’

X =x,+0+A,,
X, =x+0x +2¢+A,, (86)
X3 = U,
y=X,
where @ is an unknown constant parameter. For the
purpose of simulation, we let 6 =2. In addition, ¢is

unmeasured. Let A =0.1, A, =0.6sin(2¢) . Then,

the bounding functions are & =46, =1, &, = 1+.‘3ﬁ,
xl
= _ da, da,
0,= —=+—=. From (19) and (115), the @ and
dox, dx,
g functions are
w(x,,x,)= J': b ;a‘ dx,
(87)
b —a,
=Tx2’
L 0w, o
gn0) =Y e (226
= / (88)
b —a
:‘92( 1 2 I)29

where a,, b, ¢, are positive design constants, and
a, #b,. A & function is the output of the following
stable filter:

2
@=_{bl+cl+g2(ﬂ) }m(ujxs, (89)
2 2

where ¢, is a positive constant for design. By
introducing the following estimator,

f=—{b.+c,+ez[”';“‘] }(}2+ﬁr2_ﬂx2]

_(bl_Talj X, (90)

we can obtain the equivalent expression of ¢

g=f—d€+2%;i%—e. 1)

This representation of ¢ will be used in the control-

ler design. We are ready to design the robust adaptive
controller. For the i=1 case, the «, function, the

tuning function, and the adaptation law of the bound-
ing constant are

a = _k1x1 "é_”l s (92)
7, =Tx, —0,0-6%)1, (93)

P, =rll, —o,(p, - POI (94)
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And, for the i = 2 case, we have the ¢, function, the

tuning function, and the adaptation law of the bound-
ing constant as

do,
a, =-x, —k,(x,—a)-1n,-7%, +—a'87\]‘72
$9% 0% (b—a)x,, (95)
axl p,

= r|:x1 + (xz -, )[M + X]2 - ?J — 0y (é -6° )1’ (96)

X

7, =nll, —0,(5, - POI- 97)

For i = 3 case, the parameter adaptation law and the
adaptation law of the bounding function are

é=l{xl +(x, ——al)(w+x,2 —%]
g 98)
—(x, "az)[aaz xlz +%J‘O_s(é_60)},
ox, ox,
By =l =0, (5, - pOI- (99)

In this case, the 77, ¥, and | functions are selected
forthe case i =1,

2

n =x1[_312+%x,, (100)
}/] =0, (101)
A =€lx12 . (102)

For the case i = 2,

2 2
7, =(x2—a1)[1+?j {ﬁ§+€—2} (103)
X, 4
¥, =X, -0, (104)
2
L= 82(x2—a])2[1+ %J . (105)
xl
For the case i = 3,
(o —a)| [2%]4|9% 2 s, 6 (106)
=g ox, ox, Ps 4
2
7 =(x3—a2)(%f:2] , (107)
2
I, = g3(x3—a2)2[aa&+3”-‘2—] . (108)
x, | | ox

Finally, we can design the control input as follows:

w=—(x, — )k, (x, —0!2)+[(x2 BPNCLL r—éJ
06

YN

ox, Ix,
+ o2, xz*‘aéli’l + 22 x3+'a&1%2
ox, ap, ox, Ip,

Jda. X da, ;
""5572 —2f—(b —a)x, + a/g V4 (109)

For the simulation result, the design parameters and
initial conditions for our design scheme are given as
follows:
§(0)=x(0)=x,(0)=x0) =1,
@(0)=2(0)=0,0=(0)=1,
PO =p,(0)=p,(0) =1, (110)
a=6,b=10,c=2,6=¢,=¢,=2,
h=n=n=Lk=k=k=1,
0,=0,=0,=0,=1,
r=2,6"=0,p = p)=p =1.

5
Temssec)

Estimation smot of state {

R N U S A S
Tirne(sac)
Fig. 2. The estimation error of the unmeasured

state ¢ .
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The plot in Fig. 1 shows that our control design
scheme can achieve a robust regulation result of out-
put y. As can be seen in Fig. 2, the proposed novel

estimation technique can drive the estimation error of
the unmeasured state ¢ to an arbitrary small region

around the origin by an appropriate choice of the de-
sign parameters.

6. CONCLUSION

In this paper, a novel estimation technique-based ro-
bust adaptive control scheme is presented for a class
of uncertain nonlinear systems with a general set of
uncertainty. In contrast to other existing results, the
proposed schemes deal with a more general form, but
require less assumptions. With the novel estimation
technique and the modified adaptive backstepping for
dynamic uncertainties, the overall scheme achieves
robust regulation of the output by appropriate choice
of design constants. In addition, with these tools, we
can remove or relax the assumptions of existing re-
search.

APPENDIX 1
PROOF OF THEOREM 1
We consider the following Lyapunov function
candidate:

[

W, =3 (i=1..,m). (111)
The time derivative of W, is computed as
W,-zeé
112
=—be’ —ce’ —gel —ev, +Z ‘Ae (112)
J=1 x
Using |zp|<k,z’ +4- - -k, >0, then
{
Z_w Ae, Zaw' Aje
S ox, =1 ox;
!
Z .0, (113)
Zl: @,
= < a ; Jirj

2
d ow. p’
< k| —L | 8% +—L|.
;|: U(axj] s +4k.}

By (113), it can be shown that

] 2 2 2
u/,- S—b,-e,' —C€; _gie[ _elvl

e P (114)
+Z[ ( }é‘ ,.+Z7:},

)

where &, (i=1,..,m, andj=1,..,I) is a positive con-

stant for design. If the following function is chosen as

! w. :
gi=z{ky(§'] 5;}20, (115)

j=1

it is shown that

W < (116)
j=1 if
By completing the square,
. 2 1opt
W<—bet+ 3B (117)

Noting that the modeling error v, is bounded (refer
to Remark10.), from (14), we have

W, <-2bW +M.. (118)
If we let
M,
= —L 119
P, % (119)
then
OSW, < p +[W,(0)—pJe . (120)

Since W, is radially unbounded with regard to e,

property (1) directly follows from (120). By the defi-
nition of W, in (111), (120) satisfies

\]—+2[W(0) ple?, (i=1..m). (121)

If we choose x4, and Q, as (14), then we can obtain
property (2) of Theorem 1.

APPENDIX 11
PROOF OF COROLLARY 1
If A =0 for 1<i<l, (117) becomes
2

W <—be +:—;. (122)

i

Integration of both sides yields
r o, i ‘o,
W.(£)-W,(0) < —b, j K (r)dr+4—q jo V(D)dr. (123)

Therefore,

jote,.(r)zdr < bl[W,.(O)—W,-(t)]
‘ (124)

L (: v(r)dr.

4b.c.
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If the following constants are chosen as
1
[T =—sup(W,(0)-W, (1)]
) V20
1
4b.c,

(125)

=
= -

>

then we have property (1) of Corollary 1. Since e, is
bounded, [l 1is finite and e e L, holds. From
property (1), if v(f) is square-integrable, then
¢, € L,. Therefore, we can obtain e, e L,NL_ . By
the boundedness of v, (refer to Remark 10.), the
righthand side of (11) is bounded. Therefore, ¢, € L.

According to Barbalat's lemma [1],[2], we can get
property (2).

APPENDIX III
PROOF OF LEMMA 1
From the induction process, let us assume that step
i is valid, and then show that it is also true for step

i+1. Choose «.,,7.

i+ Vit]?

p., as forms of step i. By
easy calculation, it is possible to demonstrate that

9¢,

Zin = %o~k Zi — 4 AL — (9 Ty)

/R {z i S A A - :|ai+l‘

Therefore, it can be shown that

(126)

|
V _V+Zl+lzl+| r_p Pt

i+l

Zkz +Z:+IZ:+2+;O-9“9 90‘

_ 1
+EIZ:1:0',.( p,—-P)) —50'9‘91

_ 14 -
+ 2 (Am e/ )— _z O-jzfz'
2 Jj=1
+ I;7i+1 [lm =0 (1—;,41 - ﬁioﬂ )]

il da,  — A
+|:ZZI'+1—A!_9TF_I:||: i+l FZHI i+] €:|

+<'1+1(sz+] J F 9) ¢

i+]

1 o2
=_Zk Z +Z,+1Z,+2+§0-9|0_9 ‘
i+l i+l

+— ZO‘ (p,-p) ——o;,l&[ ZO’I z

+ 2z, (Ziﬂ / ) + §1+lli+l + Z z,i
Jj=t €j

)

{ZZM / HF'},H 9). (127)

At step i+1,1if 7,

i+]?

and [, are the same forms as
(43), then we can obtain

Vias— Vi +za.2,+ 4

i+l = i+1

Jo
|:sz+1 5507- :|(9 z-+l)

(128)

i+l
A=yl ~o,lo-6 +3 Za(P ~PYy,
= (129)
. O,
i = mln{ZkHwo-m Hﬁm}
i+l

‘max

This completes the induction process.

APPENDIX 1V
PROOF OF LEMMA 2
Using the induction process as Lemma 1, we

choose «,,,7,,,,p,, astheithforms. By easy calcu-

i+l

lation, it can be shown that

. o, A »ooa,
L T 1+z+67¢ _aé 0+ai+1_za£/ X
=197,

L| de, 9, | _p .
_Z aTch+]+a—I%—pj +y., (F+w—e)
j=1| 0%,

J

(130

=2 Kz — 4 AL - —T,) 1

eled
}/ y/:+le+|:zz/+l aejr 6T:|¢:+l

Therefore, by the method done in the proof of Lemma
1, we can obtain the following:

i+1

S—Zkz 24t 0-9|9 90' +Z

J=1 g
i+l 1+l
+= ZO‘ (p, - pj) —-—0' |H| O'jij
+Z1+1(A1+] 1+l }/H-l ‘71' e)+l—)i+lli+l
(131)

{ZZ/H ~ _67 l:|( i+ é)

At step i+1, if 7,7, and [,
forms as (68), then we can obtain

are the same

Via € —CH-I‘/H-I T 21 %2 +4

i+l = i+1

{ZZJH_"——H] :|( 1+l_é)’

(132)

where
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A, = §i+ieﬂ +—12-0'Hlt9—¢9°|2
e (133)

i+l

1 _ —
+ —ZO'/-(P,-_P;))Z
2j=l

. o,
€y = MIN {2ki+l’ Ol ’m} >0
mux( i+]

This completes the induction process.

APPENDIX V
PROOF OF THEOREM 2

Let p, = ﬁ'—"' . (78) satisfies

0<V. < p, +[V.(0)-p,Je ™" (134)

Since V, is radially unbounded with regard to
(z,, 0, p.), property (1) directly follows from (134).
By the definition of V,, (134) satisfies

n

24
ly@)| SJ . 2V (0)—-p,le . (135)

n

Thus, we can obtain the property (2) of Theorem 2.

APPENDIX VI
PROOF OF COROLLARY 2
From Corollary 1, if A, =0 and v,e L,(1<i<n)

e,(H=0. In addi-

t—o0 i

are satisfied, then we have lim
tion, by (59), ¢, =0 is obtained. The application of
the same method for /< j<n yields £, =0. Since
A, =0, we also have p, =0(1<i<n). Therefore,
(76) becomes A =0. By (80) and (81), we can ob-
tain (85).
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