• 제목/요약/키워드: Robotic Motion

검색결과 268건 처리시간 0.027초

속도 제한에 의한 충격량 도형에 관한 연구 (An analysis on the robotic impact geometry with task velocity constraint)

  • 이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.955-960
    • /
    • 1999
  • This paper describes the effect of impact configurations on a single robot manipulator. The effect of different configurations of kinematically redundant arms on impact forces at their end effectors during contact with the environment is investigated. Instead of the well-known impact ellipsoid, I propose an analytic method on the geometric configuration of the impact directly from the mathematical definition. By calculating the length along the specified motion direction and volume of the geometry, we can determine the characteristics of robot configurations in terms of both the impact along the specified direction and the ability of the robot withstanding the impact. Simulations of various impact configurations are discussed at the end of this paper.

  • PDF

로보트 매니플레이터의 제어를 위한 강인한 적응 제어기의 설계 (A STUDY OF ROBUST CONTROLLER FOR ROBOT MANIPULATOR)

  • 박경희;홍석교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1989년도 추계학술대회 논문집 학회본부
    • /
    • pp.450-455
    • /
    • 1989
  • In this paper we investigate the application to the motion control of n-link robotic manipulators of recently developed stable factorization approach to tracking and disturbance rejection. Given control scheme consists of an approximate "Computed Torque" based upon a simplified model together with additional state feedback and feedforward compensation, and then, nonlinear control gain has more useful than constant control gain to guarantee robustness to parameter uncertainty and external disturbance. At this stage, we design high gain nonlinear state feedback controller and simulate this controller at the SCARA type robot manipulator of two joint.

  • PDF

물리적 인간-기계 상호작용을 위한 표면 근전도 신호 기반의 어깨 굴곡 토크 및 각도 추정 (Estimation of Shoulder Flexion Torque and Angle from Surface Electromyography for Physical Human-Machine Interaction)

  • 박기한;이동주;김정
    • 한국정밀공학회지
    • /
    • 제28권6호
    • /
    • pp.663-669
    • /
    • 2011
  • This paper examines methods to estimate torque and angle in shoulder flexion from surface electromyography(sEMG) signals for intuitive and delicate control of robotic assistance device. Five muscles on the upper arm, three for shoulder flexion and two for shoulder extension, were used to offer favorable sEMG recording conditions in the estimation. The methods tested were the mean absolute value (MAV) with linear regression and the artificial neural network (ANN) method. An optimal condition was sought by varying combination of muscles used and the parameters in each method. The estimation performance was evaluated using the correlation values and normalized root mean square error values. In addition, we discussed their possible use as an estimation of motion intent of a user or as a command input in a physical human-machine interaction system.

유압 굴삭기의 궤적 추종을 위한 강인 제어 (Robust Control of Trajectory Tracking for Hydraulic Excavator)

  • 최종환;김승수;양순용;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제10권1호
    • /
    • pp.22-29
    • /
    • 2004
  • This paper studies the coordinated trajectory control of an excavator as a kind of robotic manipulators driven by hydraulic actuators. Hydraulic robot system has many non-linearity in dynamics and kinematics, and strong coupling among joints(or hydraulic cylinders). This paper proposes a combined controller frame of the adaptive robust control(ARC) and the sliding mode control(SMC) for the trajectory tracking control of the excavator to preserve the advantages of the both methods while overcoming their drawbacks, namely, asymptotic stability of adaptive system for parametric uncertainties and guaranteed transient performance of sliding mode control for both parametric uncertainties and external disturbance. The suggested control technique is applied for the tracking of a straight-line motion of end-effector of manipulators, and through computer simulations, its trajectory tracking performances and the robustness to payload variation and uncertainties are illustrated.

피아노 연주 로봇의 개발 (Development of Piano Playing Robot)

  • 박광현;정성훈;;;변증남
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.334-336
    • /
    • 2007
  • This paper presents a beat gesture recognition method to synchronize the tempo of a robot playing a piano with the desired tempo of the user. To detect an unstructured beat gesture expressed by any part of a body, we apply an optical flow method, and obtain the trajectories of the center of gravity and normalized central moments of moving objects in images. The period of a beat gesture is estimated from the results of the fast Fourier transform. In addition, we also apply a motion control method by which robotic fingers are trained to follow a set of trajectories, Since the ability to track the trajectories influences the sound a piano generates, we adopt an iterative learning control method to reduce the tracking error.

  • PDF

Fast and Fine Tracking Control System Using Coarse/Fine Compound Actuation

  • Kwon, Sang-Joo;Chung, Wan-Kyun;Youngil Youm
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.463-463
    • /
    • 2000
  • A dual-stage positioner for fast and fine robotic manipulations is presented. By adopting the merits of both coarse and fine actuator, a desirable system having the capacity of large workspace with high resolution of motion is enabled. We have constructed an ultra precision XY positioner with dual-stage mechanism where the PZT driven fine stage is mounted on the motor driven XY positioner and applied it to fine tracking controls and micro-tele operations as a slave manipulator. We describe essential merits of the compound actuation mechanism and some control strategies to successfully utilize it with proper servo system design. Through experimental results, the effectiveness of the coarse/fine manipulation by the dual-stage positioner will be shown.

  • PDF

로봇 머니퓰레이터의 정상상태 위치오차를 제거할 수 있는 퍼지제어 알고리듬

  • 강철구;곽희성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 춘계학술대회 논문집
    • /
    • pp.235-240
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic manipulators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller. Three dimensional look-up table is used toreduce the computational time in real-time control, and a technique reducing the amount of necessary memory is introduced. Simulation and experimental studies show that the position errors at the steady state are decreased more than 90% compared to those of existing fuzzy controller when the proposed fuzzy controller is applied to the 2 axis direct drive SCARA robot manipulator.

  • PDF

2족 보행로봇의 안정된 걸음걸이를 위한 지능제어 알고리즘의 실시간 실현에 관한 연구 (A study on The Real-Time Implementation of Intelligent Control Algorithm for Biped Robot Stable Locomotion)

  • 노연 후 콩;이우송
    • 한국산업융합학회 논문집
    • /
    • 제18권4호
    • /
    • pp.224-230
    • /
    • 2015
  • In this paper, it is presented a learning controller for repetitive walking control of biped walking robot. We propose the iterative learning control algorithm which can learn periodic nonlinear load change ocuured due to the walking period through the intelligent control, not calculating the complex dynamics of walking robot. The learning control scheme consists of a feedforward learning rule and linear feedback control input for stabilization of learning system. The feasibility of intelligent control to biped robotic motion is shown via dynamic simulation with 25-DOF biped walking robot.

표면 근전도 센서 프로토타입 개발 및 인간의 팔꿈치 관절 각도 추출 응용 (Development of Surface EMG Sensor Prototype and Its Application for Human Elbow Joint Angle Extraction)

  • 유현재;이현철;최영진
    • 로봇학회논문지
    • /
    • 제2권3호
    • /
    • pp.205-211
    • /
    • 2007
  • In this paper, the prototype of surface EMG (ElectroMyoGram) sensor is developed for the robotic rehabilitation applications, and the developed sensor is composed of the electrodes, analog signal amplifiers, analog filters, ADC (analog to digital converter), and DSP (digital signal processor) for coding the application example. Since the raw EMG signal is very low voltage, it is amplified by about one thousand times. The artifacts of amplified EMG signal are removed by using the band-pass filter. Also, the processed analog EMG signal is converted into the digital form by using ADC embedded in DSP. The developed sensor shows approximately the linear characteristics between the amplitude values of the sensor signals measured from the biceps brachii of human upper arm and the joint angles of human elbow. Finally, to show the performance of the developed EMG sensor, we suggest the application example about the real-time human elbow motion acquisition by using the developed sensor.

  • PDF

디지털 신호 처리기 (TNS320C50)를 사용한 스카라 로봇의 적응제어에 관한연구 (A Study on an Adaptive Control for SCARA Robot Using Digital Signal Processor (TMS320C50))

  • 배길호
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.114-118
    • /
    • 1996
  • This paper proposes a new technique to the design of adaptive control system using DSPs(TMS320C50) for Digital signal processors are used in implementing real time adaptive control algorithms to provide motion for robotic manipulators. In the proposed scheme, adaptation laws are derived from the improved second stability analysis based on the indirect adaptive control theory. The proposed control scheme is simple in structure, fast in computation. an suitable for implementation of real-time control. Moreover, this scheme does not requre an accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the adaptive controller is illustrated by exeperimental reults for a SCARA robot.

  • PDF