• 제목/요약/키워드: Robot navigation

Search Result 822, Processing Time 0.024 seconds

Analysis of Keyword Trend for ICT Convergence Services (ICT 융합 서비스의 키워드 트렌드 분석)

  • Jang, HeeSeon
    • Convergence Security Journal
    • /
    • v.14 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • With ubiquitous computing and network, the concern of government, business and academy for IT or ICT convergence has been increased. In this paper, through the analysis of keyword trend for ICT convergence services from 2000's mid, the efficient policy is proposed by estimating the understanding and concern of common people. In addition to, the concept and development step of convergence are analyzed, and the keyword analysis for the ICT convergence services defined in TTA is performed. The services are classified into smart home work transportation, Health ICT, RFID USN, M2M IoT, e-Navigation, intelligent robot, and the keywords for each service are analyzed. The analytic results indicate that the keyword trend varies in the time, and highly indexing keywords and new trend are defined. To provide the efficient ICT services, the new ICT convergence services needed for customer will be proposed with new IT technology development, IT standard, law management, and policy provisioining.

Database based Global Positioning System Correction (데이터베이스 기반 GPS 위치 보정 시스템)

  • Moon, Jun-Ho;Choi, Hyuk-Doo;Park, Nam-Hun;Kim, Chong-Hui;Park, Yong-Woon;Kim, Eun-Tai
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.3
    • /
    • pp.205-215
    • /
    • 2012
  • A GPS sensor is widely used in many areas such as navigation, or air traffic control. Particularly, the car navigation system is equipped with GPS sensor for locational information. However, when a car goes through a tunnel, forest, or built-up area, GPS receiver cannot get the enough number of satellite signals. In these situations, a GPS receiver does not reliably work. A GPS error can be formulated by sum of bias error and sensor noise. The bias error is generated by the geometric arrangement of satellites and sensor noise error is generated by the corrupted signal noise of receiver. To enhance GPS sensor accuracy, these two kinds of errors have to be removed. In this research, we make the road database which includes Road Database File (RDF). RDF includes road information such as road connection, road condition, coordinates of roads, lanes, and stop lines. Among the information, we use the stop line coordinates as a feature point to correct the GPS bias error. If the relative distance and angle of a stop line from a car are detected and the detected stop line can be associated with one of the stop lines in the database, we can measure the bias error and correct the car's location. To remove the other GPS error, sensor noise, the Kalman filter algorithm is used. Additionally, using the RDF, we can get the information of the road where the car belongs. It can be used to help the GPS correction algorithm or to give useful information to users.

Implementation of Autonomous Navigation based on the Open Architecture (개방형 아키텍처 기반의 자율주행 기술 구현)

  • Park, Yong-Woon;Jee, Tae-Young;Kang, Sin-Cheon;Ryu, Chul-Hyung;Ko, Jung-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.34-38
    • /
    • 2007
  • There has been skeptical aspects for the robot to be effective in combat fields even though consensus of operational needs and some technological advancements. One of fundamental problems is difficulties in the autonomous technology applicable. This technology is not sufficient to be applied for heavy combat operation, therefore, developer first make open architecture, then, application is implemented on the condition that new functions or technologies will be developed later. It is also required to partition all the functions with common segments which are general to all platforms in order to operate together in the fields and to reduce the load of development to each platform respectively. In addition, common middleware based on the reference architecture is also developed to accommodate new technology evolution. This paper introduces the architecture and middleware applied in XAV(eXperimental Autonomous Vehicle) developed in ADD. In addition, the performance of autonomous navigation and system design characteristics are introduced briefly.

Performance Analysis of the Wireless Localization Algorithms Using the IR-UWB Nodes with Non-Calibration Errors

  • Cho, Seong Yun;Kang, Dongyeop;Kim, Jinhong;Lee, Young Jae;Moon, Ki Young
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.105-116
    • /
    • 2017
  • Several wireless localization algorithms are evaluated for the IR-UWB-based indoor location with the assumption that the ranging measurements contain the channelwise Non-Calibration Error (NCE). The localization algorithms can be divided into the Model-free Localization (MfL) methods and Model-based Kalman Filtering (MbKF). The algorithms covered in this paper include Iterative Least Squares (ILS), Direct Solution (DS), Difference of Squared Ranging Measurements (DSRM), and ILS-Common (ILS-C) methods for the MfL methods, and Extended Kalman Filter (EKF), EKF-Each Channel (EKF-EC), EKF-C, Cubature Kalman Filter (CKF), and CKF-C for the MbKF. Experimental results show that the DSRM method has better accuracy than the other MfL methods. Also, it demands smallest computation time. On the other hand, the EKF-C and CKF-C require some more computation time than the DSRM method. The accuracy of the EKF-C and CKF-C is, however, best among the 9 methods. When comparing the EKF-C and CKF-C, the CKF-C can be easily used. Finally, it is concluded that the CKF-C can be widely used because of its ease of use as well as it accuracy.

A Study of GNSS Performance Enhancement using Correction Estimation and Visible Satellites Selection (보정량 추정 및 가시위성 선정 기법을 이용한 위성항법 성능개선 연구)

  • Bong, Jae Hwan;Jeong, Seong-Kyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.995-1002
    • /
    • 2022
  • Global Navigation Satellite System(GNSS) is a convenient system that acquires position and time information of a receiver if only satellite signals can be received anywhere in the world. However navigation signals include errors and a position error occurs according to the reception state of the signal. Also, a position error is affected by the geometric arrangement of the satellites. Therefore a receiver position performance varies by the number and status of visible satellites The condition of satellite signals is not good when the satellite rises or sets and the position change of receiver occurs when the signal is blocked by an obstacle such as a building in the urban area. In this paper, we proposed methods to improve the GNSS performance by using pseudorange correction method estimating the correction amount and the visible satellites selection method. By applying the proposed methods to an environment in which the number of visible satellites changes variously, the performance enhancement was verified.

A Realization of CNN-based FPGA Chip for AI (Artificial Intelligence) Applications (합성곱 신경망 기반의 인공지능 FPGA 칩 구현)

  • Young Yun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.388-389
    • /
    • 2022
  • Recently, AI (Artificial Intelligence) has been applied to various technologies such as automatic driving, robot and smart communication. Currently, AI system is developed by software-based method using tensor flow, and GPU (Graphic Processing Unit) is employed for processing unit. However, if software-based method employing GPU is used for AI applications, there is a problem that we can not change the internal circuit of processing unit. In this method, if high-level jobs are required for AI system, we need high-performance GPU, therefore, we have to change GPU or graphic card to perform the jobs. In this work, we developed a CNN-based FPGA (Field Programmable Gate Array) chip to solve this problem.

  • PDF

Design of Lateral Fuzzy-PI Controller for Unmanned Quadrotor Robot (무인 쿼드로터 로봇 횡 방향 제어를 위한 Fuzzy-PI 제어기 설계)

  • Baek, Seung-Jun;Lee, Deok-Jin;Park, Jong-Ho;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.164-170
    • /
    • 2013
  • Quadrotor UAV (Unmanned Aerial Vehicle) is a flying robotic platform which has drawn lots of attention in the recent years. The attraction comes from the fact that it is able to perform agile VTOL (Vertical Take-Off Landing) and hovering functions. In addition, the efficient modular structure composed of four electric rotors makes its design easier compared to other single-rotor type helicopters. In many cases, a quadrotor often utilizes vision systems in order to obtain altitude control and navigation solution in hostile environments where GPS receivers are not working or deniable. For carrying out their successful missions, it is essential for flight control systems to have fast and stable control responses of heading angle outputs. This paper presents a Fuzzy Logic based lateral PI controller to stabilize and control the quadrotor vehicle equipped with vision systems. The advantage of using the fuzzy based PI controller lies in the fact that it could acquire a desired output response of a heading angle even in presence of disturbances and uncertainties. The performance comparison of the newly proposed Fuzzy-PI controller and the conventional PI controller was carried out with various simulation results.

3D Range Measurement using Infrared Light and a Camera (적외선 조명 및 단일카메라를 이용한 입체거리 센서의 개발)

  • Kim, In-Cheol;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.1005-1013
    • /
    • 2008
  • This paper describes a new sensor system for 3D range measurement using the structured infrared light. Environment and obstacle sensing is the key issue for mobile robot localization and navigation. Laser scanners and infrared scanners cover $180^{\circ}$ and are accurate but too expensive. Those sensors use rotating light beams so that the range measurements are constrained on a plane. 3D measurements are much more useful in many ways for obstacle detection, map building and localization. Stereo vision is very common way of getting the depth information of 3D environment. However, it requires that the correspondence should be clearly identified and it also heavily depends on the light condition of the environment. Instead of using stereo camera, monocular camera and the projected infrared light are used in order to reduce the effects of the ambient light while getting 3D depth map. Modeling of the projected light pattern enabled precise estimation of the range. Identification of the cells from the pattern is the key issue in the proposed method. Several methods of correctly identifying the cells are discussed and verified with experiments.

Simultaneous Localization and Mapping of Mobile Robot using Digital Magnetic Compass and Ultrasonic Sensors (전자 나침반과 초음파 센서를 이용한 이동 로봇의 Simultaneous Localization and Mapping)

  • Kim, Ho-Deok;Lee, Hae-Gang;Seo, Sang-Uk;Jang, In-Hun;Sim, Gwi-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.37-40
    • /
    • 2007
  • Digital Magnetic Compass(DMC)는 실내의 전자기적 요소나 강한 자성체 건물구조에서는 쉽게 방해를 받던 Compass보다 실내에서 간섭에 강한 특징을 가지고 있다. 그리고 적외선 센서와 초음파 센서는 서로 물체와의 거리를 보완적으로 계산해 줄뿐만 아니라 값싼 센서로서 경제적인 이점을 가지고 있어 Simultaneous Localization and Mapping(SLAM)에서 많이 사용하고 있다. 본 논문에서는 자율 이동 로봇의 구동에서 Digital Magnetic Compass(DMC)와 Ultrasonic Sensors을 이용한 SLAM의 구현에 대해 연구하였다. 로봇의 특성상 한정된 Sensing 데이터만으로 방향과 위치를 파악하고 그 데이터 값으로 가능한 빠르게 Localization을 하여야 한다. 그러므로 자율 이동 로봇에서의 SLAM 적용함으로 Localization 구현과 Mapping을 수행하고 SLAM 구현상의 주된 연구 중의 하나인 Kid Napping 문제에 중점을 두고 연구한다. 특히, Localization 구현을 수행을 위한 데이터의 Sensing 방법으로 적외선 센서와 초음파 센서를 같이 사용하였고 비슷한 위치의 데이터 값이 주어지거나 사전 정보 없는 상태에서는 로봇의 상태를 파악하기 위해서 DMC을 같이 사용하여 더 정확한 위치를 측정에 활용하였다.

  • PDF

An Efficient Algorithm for 3-D Range Measurement using Disparity of Stereoscopic Camera (스테레오 카메라의 양안 시차를 이용한 거리 계측의 고속 연산 알고리즘)

  • 김재한
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1163-1168
    • /
    • 2001
  • The ranging systems measure range data in three-dimensional coordinate from target surface. These non-contact remote ranging systems is widely used in various automation applications, including military equipment, construction field, navigation, inspection, assembly, and robot vision. The active ranging systems using time of flight technique or light pattern illumination technique are complex and expensive, the passive systems based on stereo or focusing principle are time-consuming. The proposed algorithm, that is based on cross correlation of projection profile of vertical edge, provides advantages of fast and simple operation in the range acquisition. The results of experiment show the effectiveness of the proposed algorithm.

  • PDF