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1. INTRODUCTION

T h e  p o s i t i o n  i n f o r m a t i o n  o f  h u m a n s ,  r o b o t s /

transporters, and objects in an indoor space is required 

in diverse application fields. To resolve this issue, various 

methods have been studied and applied in practical life 

over the last decades (Kolodziej & Hjelm 2006). Research 

on pseudolite development and relevant technique was 

once a big issue, which was attributed to an aim of using an 

outdoor GPS receiver in an indoor space as it stands, but the 

commercialization was unsuccessful due to the problem 

of high-priced infrastructure installation (Kee et al. 2003). 

For localization that is not dependent on infrastructure, 

research on the Pedestrian Dead Reckoning (PDR) using 

inertial sensors has been performed for the last 20 years. 

With the performance improvement of MEMS-type inertial 
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sensors, the method has become a solution that provides 

relatively stable position information. However, maintaining 

long-term accuracy is difficult when it is not combined 

with infrastructure, and the fact that the device needs 

to be installed on the body still serves as an obstacle to 

commercialization (Cho & Park 2006, Ju et al. 2015). The Wi-

Fi Positioning System (WPS) techniques, which have been 

successfully commercialized by software development and 

the establishment of the database necessary for localization 

without investing a large sum of money in infrastructure 

installation, are based on the generalization of Wi-Fi 

Access Point (AP) installation and the popularization of a 

smartphone that includes a Wi-Fi transceiver module. The 

WPS techniques include: a method in which the database 

of the Media Access Control (MAC) address, which 

accords with the position information of installed AP, is 

established and localization is then performed based on 

trilateration and centroid techniques using the established 

database, and a method in which fingerprinting database is 

established and localization is then performed based on the 

K-Nearest Neighbor (KNN) algorithm using the established 
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fingerprinting database. The aforementioned techniques 

have recently been commercialized, and they have become 

popular techniques for indoor navigation. However, further 

research is required on the limitation of accuracy and the 

update of database (Cho & Park 2014, Cho 2016). When 

accurate position information is necessary, ultrasonic waves 

or Impulse Radio-Ultra Wideband (IR-UWB) can be used. 

In the case of ultrasonic waves, which are slower than radio 

waves traveling at the speed of light, accurate localization 

can be achieved on the strength of the small resolution of 

the measurable distance, but it cannot be used for wide-

range localization due to the short coverage of its signal. 

Thus, ultrasonic waves are efficiently used for the robot 

localization in a small space. IR-UWB can provide a high-

accuracy ranging solution with relatively wide coverage. In 

addition, the price of the transceiver chip has decreased in 

recent years, and the applicability has increased accordingly 

(Gezici et al. 2005, Oh et al. 2009).

In this study, the indoor localization technique using 

IR-UWB was investigated. IR-UWB is capable of accurate 

ranging based on the Two Way Ranging (TWR) or 

Symmetric Double Sided-TWR (SDS-TWR) techniques 

without any time synchronization. However, the distance 

measurement includes the environmental error, such as the 

multi-path error and Non-Line of Sight (NLOS) error, and 

the node internal error produced by the H/W and S/W of the 

transceiver (node) (Banani et al. 2013, Hur & Ahn 2014). The 

node internal error can be expressed as fixed errors for each 

channel, and it can be compensated through calibration 

before use. However, a user needs to perform calibration 

with background knowledge, and thus, the assumption that 

calibration is conducted before use in every application 

space may not be satisfied. In this study, therefore, it was 

assumed that the Non-Calibration Error (NCE) is basically 

included in the measurement.

The localization techniques using distance measurement 

can be classified into Model-Free Localization (MfL) and 

Model-based Kalman Filtering (MbKF). MfL is again 

classified into the iteration technique and the Linear Closed-

form Solution (LCS) technique. The iteration technique 

includes the Iterative Least Squares (ILS) method, and the 

LCS technique includes the Direct Solution (DS) method 

and the Difference of Squared Ranging Measurements 

(DSRM) method (Park & Yim 2010, Cho & Kim 2013). MbKF 

is classified into the Constant Velocity (CV) model and the 

Constant Acceleration (CA) model according to the system 

model. As the measurement equation is nonlinear, it can 

also be classified into the Extended Kalman Filter (EKF), 

Unscented Kalman Filter (UKF), and Cubature Kalman 

Filter (CKF) according to the filter types. As mentioned 

above, there are various techniques for localization using 

distance measurement. These techniques have different 

characteristics, and show different performances depending 

on the measurement error characteristics. In this study, 

the characteristics of diverse localization algorithms were 

analyzed when NCE was included. For this purpose, an 

experiment was conducted, and the performances of the 

algorithms were analyzed based on the localization results 

when the same experiment data was applied to each 

algorithm.

The contents of this paper are as follows. In Chapter 2, 

IR-UWB-based ranging, ranging error, and the calibration 

technique are explained. In Chapter 3, various wireless 

localization algorithms are described; and in Chapter 4, the 

characteristics of each algorithm are analyzed based on the 

experimental results. The conclusions are summarized in 

the last chapter.

2. IR-UWB-BASED RANGING AND 
CALIBRATION

IR-UWB cannot measure the Time of Arrival (ToA) 

based on the time synchronization between nodes, and 

it calculates the distance by measuring the Round Trip of 

Flight (RToF) through TWR or SDS-TWR. When the distance 

between NodeA and NodeB is measured based on these two 

methods, the ranging errors can be expressed in Eq. (1), 

respectively.
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where ireplyt _  is the time between the reception of the signal sent from another node and the 

retransmission of the signal in Nodei, and ie  is the clock error of Nodei. c is the travel speed of 
the signal, which is identical to the speed of light. 

Based on Eq. (1), it can be found that SDS-TWR has superior performance compared to 
TWR. However, the clock error of each H/W is different although the same S/W is operated at 
the identically manufactured H/W. When the resultant time difference is multiplied by the speed 
of light, substantial ranging error could occur. Considering this, the ranging equation on a two-
dimensional plane can be expressed by Eq. (2). 
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distance between two nodes, and a parameter estimation algorithm is then carried out. In an LOS 
environment, when n measurements are obtained assuming that BA  is absent in Eq. (2), it can 
be expressed by Eq. (3). 
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distance between NodeA and NodeB, respectively. δSF A-B 

and BA-B are the node internal errors due to NC, and they 

represent the scale factor error and the bias, respectively. 

δA-B is the ranging error due to environmental factors. uA-B is 

the noise, which is assumed to be white Gaussian.

In general, node internal error can be compensated 

through calibration. For this purpose, data are collected 

in a space where the Line of Sight (LOS) is guaranteed, 

while changing the distance between two nodes, and a 

parameter estimation algorithm is then carried out. In an 

LOS environment, when n measurements are obtained 

assuming that δA-B is absent in Eq. (2), it can be expressed by 

Eq. (3).
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The scale factor error and the bias can be estimated based on the least squares method as 

shown in Eq. (4). 
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When there are n nodes, this process needs to be carried out n (n-1)/2 times since it needs to 

be carried out based on every node pair. However, when this process is omitted, a large error 
could occur as the node internal error interacts with the environmental error factors. 
 
3. WIRELESS LOCALIZATION ALGORITHMS 
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In this chapter, various wireless localization algorithms are summarized, and the characteristics 
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When there are n nodes, this process needs to be carried 

out n (n-1)/2 times since it needs to be carried out based on 

every node pair. However, when this process is omitted, a 

large error could occur as the node internal error interacts 

with the environmental error factors.
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depending on the localization algorithms. In this chapter, 
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and the characteristics are analyzed. For this purpose, Eq. (2) 
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The scale factor error and the bias can be estimated based on the least squares method as 

shown in Eq. (4). 
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Using the estimated values, the distance measurement is compensated as shown in Eq. (5). 
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where the superscript M-A represents Mobile Node (MN)-

Anchor Node (AN), and A ∊ {1, …, n}.

The position of node on a two-dimensional plane could 

be expressed in the form of a complex number. In Eq. (6), 

ANs whose positions are accurately known were expressed 

as {pA = xA + jyA}A ∊ {1, …, n}, and a MN whose position is to be 

estimated was expressed as {pM = xM + jyM}.

3.1 ILS Method

For the ILS method, which is the most frequently 

used method for distance measurement-based wireless 

localization, Eq. (6) can be arranged as shown in Eq. (7), 

through the first-order expansion of the Taylor series.
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where {pM* = xM* + jyM*} is the nominal point for the Taylor 

series expansion, and the calculated distance between ANA 

and MN is expressed by rM-A* = √
_
(xA -
_
 xM*)
_
2 + 
_
(yA -
_
 yM*)2 = |pA - pM|.  

{δpM = δxM + jδyM} is the error of the nominal point.

When the MN is connected with n ANs, the equation can 

be expressed as shown in Eq. (8) ignoring NCE (Mendel 

1995).
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where the superscript M-j represents MN-AN j, and the subscript k represents the iteration 
sequence. Through the iteration, the position update and distance calculation are performed as 
shown in Eq. (9). 
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When NCE is considered, it is not that every error for each channel can be estimated. It is 

because the measurement matrix cannot have a full rank. In this study, therefore, channel 
common bias was defined. Bias occurs during the process in which a signal is received at the 
antenna, is transmitted to RF chip, and is acquired by S/W; and thus it has a positive value at all 
times. In addition, when it is assumed that each node using the same H/W and S/W would have 
similar error characteristics, it is predicted that the bias for each channel would also have similar 
values. Therefore, the bias for each channel can be assumed to be common bias, and it can be 
included in the state variables to be estimated. In this regard, the scale factor has a value that is 
relatively close to 0. When this value is included in the state variables and is to be estimated 
together, the connections between the MN and ANs are not sufficient, and accordingly, when the 
number of ranging data is less than 4, estimation cannot be performed as the measurement matrix 
cannot have a full rank. Therefore, in this study, the scale factor was not included in the state 
variables. As a result, it can be rearranged as shown in Eq. (10). 

 

















































































































nM

M

CM
k

M
k

M
k

nM
k

M
k

n

nM
k

M
k

n

M
k

M
k

M
k

M
k

nM
k

nM

M
k

M

u

u

B
y
x

r
yy

r
xx

r
yy

r
xx

rr

rr


11

1

1

1

11

1

1

~

~




                      (10) 

 

� (8)

where the superscript M-j represents MN-AN j, and the 

subscript k represents the iteration sequence. Through the 

iteration, the position update and distance calculation are 

performed as shown in Eq. (9).
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where the superscript M-j represents MN-AN j, and the subscript k represents the iteration 
sequence. Through the iteration, the position update and distance calculation are performed as 
shown in Eq. (9). 
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because the measurement matrix cannot have a full rank. In this study, therefore, channel 
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times. In addition, when it is assumed that each node using the same H/W and S/W would have 
similar error characteristics, it is predicted that the bias for each channel would also have similar 
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included in the state variables to be estimated. In this regard, the scale factor has a value that is 
relatively close to 0. When this value is included in the state variables and is to be estimated 
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number of ranging data is less than 4, estimation cannot be performed as the measurement matrix 
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where }{ *** MMM jyxP   is the nominal point for the Taylor series expansion, and the 
calculated distance between ANA and MN is expressed by 

MAMAMAAM ppyyxxr  2*2** )()( . }{ MMM yjxP    is the error of the 
nominal point. 

When the MN is connected with n ANs, the equation can be expressed as shown in Eq. (8) 
ignoring NCE (Mendel 1995). 
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where the superscript M-j represents MN-AN j, and the subscript k represents the iteration 
sequence. Through the iteration, the position update and distance calculation are performed as 
shown in Eq. (9). 
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When NCE is considered, it is not that every error for each channel can be estimated. It is 

because the measurement matrix cannot have a full rank. In this study, therefore, channel 
common bias was defined. Bias occurs during the process in which a signal is received at the 
antenna, is transmitted to RF chip, and is acquired by S/W; and thus it has a positive value at all 
times. In addition, when it is assumed that each node using the same H/W and S/W would have 
similar error characteristics, it is predicted that the bias for each channel would also have similar 
values. Therefore, the bias for each channel can be assumed to be common bias, and it can be 
included in the state variables to be estimated. In this regard, the scale factor has a value that is 
relatively close to 0. When this value is included in the state variables and is to be estimated 
together, the connections between the MN and ANs are not sufficient, and accordingly, when the 
number of ranging data is less than 4, estimation cannot be performed as the measurement matrix 
cannot have a full rank. Therefore, in this study, the scale factor was not included in the state 
variables. As a result, it can be rearranged as shown in Eq. (10). 
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common bias, and it can be included in the state variables to 
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is relatively close to 0. When this value is included in the state 

variables and is to be estimated together, the connections 

between the MN and ANs are not sufficient, and accordingly, 

when the number of ranging data is less than 4, estimation 

cannot be performed as the measurement matrix cannot 

have a full rank. Therefore, in this study, the scale factor 

was not included in the state variables. As a result, it can be 

rearranged as shown in Eq. (10).

 
where }{ *** MMM jyxP   is the nominal point for the Taylor series expansion, and the 
calculated distance between ANA and MN is expressed by 

MAMAMAAM ppyyxxr  2*2** )()( . }{ MMM yjxP    is the error of the 
nominal point. 

When the MN is connected with n ANs, the equation can be expressed as shown in Eq. (8) 
ignoring NCE (Mendel 1995). 
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where the superscript M-j represents MN-AN j, and the subscript k represents the iteration 
sequence. Through the iteration, the position update and distance calculation are performed as 
shown in Eq. (9). 
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where BM-C is the channel common bias. The position update 

is identical to that shown in (9a), and rk
M-A* is calculated as 

shown in Eq. (11).

where CMB   is the channel common bias. The position update is identical to that shown in (9a), 
and AM

kr  is calculated as shown in Eq. (11). 
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In the ILS method, NCE can be considered, but error estimation for each channel is not 

possible, and channel common bias can be defined, estimated, and compensated. When the 
deviation of the bias for each channel is large, accurate error correction could be difficult, but the 
effectiveness will be analyzed through the experimental results in Chapter 4. 

 
3.2 DS Method 

 
The DS method is classified as the LCS technique among the MfL techniques, and the 

position solution can be expressed by Eq. (12). 
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where each parameter can be found in Biton et al. (1998). 

The DS method has a smaller computational load compared to the ILS method. However, 
there is a Red Sea Zone problem, where the error becomes large at the region in which the value 
of the square root in Eq. (12) is close to 0 depending on the position relationship among the ANs 
and MN (Cho & Kim 2013). In addition, this method expands the equation ignoring the scale 
factor error, bias, and measurement noise defined in Eq. (6); and thus the localization error due 
to NC becomes additionally larger. 

 
3.3 DSRM Method 

 
Among the LCS techniques, the DSRM method can be organized as shown in Eq. (13) 

considering the measurement noise. 
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effectiveness will be analyzed through the experimental 

results in Chapter 4.
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where each parameter can be found in Biton et al. (1998).

The DS method has a smaller computational load 

compared to the ILS method. However, there is a Red Sea 

Zone problem, where the error becomes large at the region 

in which the value of the square root in Eq. (12) is close 

to 0 depending on the position relationship among the 

ANs and MN (Cho & Kim 2013). In addition, this method 

expands the equation ignoring the scale factor error, bias, 

and measurement noise defined in Eq. (6); and thus the 

localization error due to NC becomes additionally larger.

3.3 DSRM Method

Among the LCS techniques, the DSRM method can be 

organized as shown in Eq. (13) considering the measurement 
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The important point of this method can be examined in 

{pA-c}A ∊ {1, …, (n-1)}. When Eq. (6) is substituted into Eq. (15), it can 

be arranged as shown in Eq. (16) ignoring the multiplication 

of the errors.

The important point of this method can be examined in )}1(,,1{}{ 
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 . When Eq. (6) is 
substituted into Eq. (15), it can be arranged as shown in Eq. (16) ignoring the multiplication of 
the errors. 
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Eq. (17) is included in the measurement error, and is analyzed as follows. The value of the 

scale factor error is close to 0, and thus AE  can be ignored. Assuming that the measurement 
noise is small and the bias is not large in the case of IR-UWB-based ranging, BE  also has a 
small value. The bias always has a positive value as explained in the previous section, and the 
bias for each channel is expected to show similar characteristics. Accordingly, CE  can be 
maintained at a small value, and a superior characteristic is expected in this regard, compared to 
the other methods. In addition, DE  is considered by Q  in Eq. (13). In summary, the DSRM 
method is relatively less affected by NCE, compared to the other methods. 
 
3.4 EKF 
 

For the wireless localization using the Kalman filter, the state variables to be estimated and 
the dynamic model of a MN need to be selected by considering them together. In general, when 
the MN has a stable movement, a CV model is selected, and the position and velocity are 
selected as the state variables. However, when the MN has a fast movement, a CA model is 
selected, and the position, velocity, and acceleration are selected as the state variables. In this 
study, a CV model was used, and a localization filter was designed using EKF since the 
measurement model is nonlinear as shown in Eq. (6). In the case of EKF, the error system model 
and the measurement model can be expressed by Eqs. (18) and (19) (Brown & Hwang 1997). 
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bias for each channel is expected to show similar characteristics. Accordingly, CE  can be 
maintained at a small value, and a superior characteristic is expected in this regard, compared to 
the other methods. In addition, DE  is considered by Q  in Eq. (13). In summary, the DSRM 
method is relatively less affected by NCE, compared to the other methods. 
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the dynamic model of a MN need to be selected by considering them together. In general, when 
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selected as the state variables. However, when the MN has a fast movement, a CA model is 
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study, a CV model was used, and a localization filter was designed using EKF since the 
measurement model is nonlinear as shown in Eq. (6). In the case of EKF, the error system model 
and the measurement model can be expressed by Eqs. (18) and (19) (Brown & Hwang 1997). 
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Eq. (17) is included in the measurement error, and is 

analyzed as follows. The value of the scale factor error is 

close to 0, and thus EA can be ignored. Assuming that the 
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model is selected, and the position and velocity are selected 

as the state variables. However, when the MN has a fast 

movement, a CA model is selected, and the position, 

velocity, and acceleration are selected as the state variables. 

In this study, a CV model was used, and a localization filter 

was designed using EKF since the measurement model 

is nonlinear as shown in Eq. (6). In the case of EKF, the 

error system model and the measurement model can be 

expressed by Eqs. (18) and (19) (Brown & Hwang 1997).
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where }{ MMM yjxv     is the velocity error of the MN, and T  is the time propagation period 
of the filter, which is identical to the distance measurement acquisition period. Q and R are the 
processor noise covariance matrix and the measurement noise covariance matrix, respectively. 

The position of the MN is updated as shown in Eq. (20) at the frequency of ranging, and it 
is then compensated as shown in Eq. (21) using the error estimates. 
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where the superscript   represents the time propagation. 

When there is NCE, it can be added as a state variable. In the filter, only the bias is 
estimated excluding the scale factor error. When all the biases for each channel are added, the 
error state variable and the system and measurement matrices are designed as shown in Eq. (22-
24). 
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where F  and kH  are the system matrix and the measurement matrix used in Eqs. (18) and (19), 
respectively. NnIh  , and N  represent the number of measurements (n). The distance 
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kB ˆ  in the state variables is the bias 

estimation error of Channel A. 
The filter operation is identical to that shown in Eqs. (20-21), and only the bias estimation 

update is added as shown in Eq. (25). 
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In this case, the observability for the estimation of each bias needs to be analyzed, and it 

will be analyzed through the test results in Chapter 4. If the degree of observability is low, the 
accuracy of the estimated bias can be low. Considering this, the design can be implemented 
using channel common bias, similar to the design of the ILS method. In that case, the error state 
variable is expressed by Eq. (26). 
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of the filter, which is identical to the distance measurement acquisition period. Q and R are the 
processor noise covariance matrix and the measurement noise covariance matrix, respectively. 

The position of the MN is updated as shown in Eq. (20) at the frequency of ranging, and it 
is then compensated as shown in Eq. (21) using the error estimates. 
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When there is NCE, it can be added as a state variable. In the filter, only the bias is 
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error state variable and the system and measurement matrices are designed as shown in Eq. (22-
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where }{ MMM yjxv     is the velocity error of the MN, and T  is the time propagation period 
of the filter, which is identical to the distance measurement acquisition period. Q and R are the 
processor noise covariance matrix and the measurement noise covariance matrix, respectively. 

The position of the MN is updated as shown in Eq. (20) at the frequency of ranging, and it 
is then compensated as shown in Eq. (21) using the error estimates. 
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where the superscript   represents the time propagation. 

When there is NCE, it can be added as a state variable. In the filter, only the bias is 
estimated excluding the scale factor error. When all the biases for each channel are added, the 
error state variable and the system and measurement matrices are designed as shown in Eq. (22-
24). 
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where the superscript - represents the time propagation.

When there is NCE, it can be added as a state variable. 

In the filter, only the bias is estimated excluding the scale 

factor error. When all the biases for each channel are added, 

the error state variable and the system and measurement 

matrices are designed as shown in Eq. (22-24).
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where }{ MMM yjxv     is the velocity error of the MN, and T  is the time propagation period 
of the filter, which is identical to the distance measurement acquisition period. Q and R are the 
processor noise covariance matrix and the measurement noise covariance matrix, respectively. 

The position of the MN is updated as shown in Eq. (20) at the frequency of ranging, and it 
is then compensated as shown in Eq. (21) using the error estimates. 
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where the superscript   represents the time propagation. 

When there is NCE, it can be added as a state variable. In the filter, only the bias is 
estimated excluding the scale factor error. When all the biases for each channel are added, the 
error state variable and the system and measurement matrices are designed as shown in Eq. (22-
24). 
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where F  and kH  are the system matrix and the measurement matrix used in Eqs. (18) and (19), 
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In this case, the observability for the estimation of each bias needs to be analyzed, and it 

will be analyzed through the test results in Chapter 4. If the degree of observability is low, the 
accuracy of the estimated bias can be low. Considering this, the design can be implemented 
using channel common bias, similar to the design of the ILS method. In that case, the error state 
variable is expressed by Eq. (26). 
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where }{ MMM yjxv     is the velocity error of the MN, and T  is the time propagation period 
of the filter, which is identical to the distance measurement acquisition period. Q and R are the 
processor noise covariance matrix and the measurement noise covariance matrix, respectively. 

The position of the MN is updated as shown in Eq. (20) at the frequency of ranging, and it 
is then compensated as shown in Eq. (21) using the error estimates. 
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where the superscript   represents the time propagation. 

When there is NCE, it can be added as a state variable. In the filter, only the bias is 
estimated excluding the scale factor error. When all the biases for each channel are added, the 
error state variable and the system and measurement matrices are designed as shown in Eq. (22-
24). 
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where }{ MMM yjxv     is the velocity error of the MN, and T  is the time propagation period 
of the filter, which is identical to the distance measurement acquisition period. Q and R are the 
processor noise covariance matrix and the measurement noise covariance matrix, respectively. 

The position of the MN is updated as shown in Eq. (20) at the frequency of ranging, and it 
is then compensated as shown in Eq. (21) using the error estimates. 
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where the superscript   represents the time propagation. 

When there is NCE, it can be added as a state variable. In the filter, only the bias is 
estimated excluding the scale factor error. When all the biases for each channel are added, the 
error state variable and the system and measurement matrices are designed as shown in Eq. (22-
24). 
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where }{ MMM yjxv     is the velocity error of the MN, and T  is the time propagation period 
of the filter, which is identical to the distance measurement acquisition period. Q and R are the 
processor noise covariance matrix and the measurement noise covariance matrix, respectively. 

The position of the MN is updated as shown in Eq. (20) at the frequency of ranging, and it 
is then compensated as shown in Eq. (21) using the error estimates. 
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where the superscript   represents the time propagation. 

When there is NCE, it can be added as a state variable. In the filter, only the bias is 
estimated excluding the scale factor error. When all the biases for each channel are added, the 
error state variable and the system and measurement matrices are designed as shown in Eq. (22-
24). 
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In this case, the observability for the estimation of each bias needs to be analyzed, and it 

will be analyzed through the test results in Chapter 4. If the degree of observability is low, the 
accuracy of the estimated bias can be low. Considering this, the design can be implemented 
using channel common bias, similar to the design of the ILS method. In that case, the error state 
variable is expressed by Eq. (26). 
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3.5 CKF 

 
To analyze the localization characteristics depending on the type of the filter, a localization 

filter was designed using CKF. CKF is an approximate Bayesian filter based on the cubature rule, 
and it is known that the characteristics of the third-order CKF are similar to those of UKF. For 
the model, a CV model was used, similar to EKF. When the NCE model is not considered, the 
number of state variables is 4, and thus eight Cubature Points (CP) are established (Arasaratnam 
& Haykin 2009). When the distance measurement is obtained, time propagation is performed as 
shown in Eq. (27). 
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where   is the matrix that defines CP, and the subscripts in parentheses ),( ji  represent the i -th 
row and the j -th column. The columns of each row represent the x-axis position, the x-axis 
velocity, the y-axis position, and the y-axis velocity, respectively. N  is the order of the state 
variable, which is 4. 

After the time propagation of CP, the state variable ( 
kx̂ ) and the error covariance matrix 

( 
kP ) are calculated. The measurement update is then carried out as shown in Eqs. (28) and (29). 
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where xzP  and zzP  are the cross-covariance martix of the state variable and the measurement, and 
the measurement covariance matrix, respectively. The measurement is calculated as shown in Eq. 
(30). 
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where   is the matrix that defines CP, and the subscripts in parentheses ),( ji  represent the i -th 
row and the j -th column. The columns of each row represent the x-axis position, the x-axis 
velocity, the y-axis position, and the y-axis velocity, respectively. N  is the order of the state 
variable, which is 4. 

After the time propagation of CP, the state variable ( 
kx̂ ) and the error covariance matrix 

( 
kP ) are calculated. The measurement update is then carried out as shown in Eqs. (28) and (29). 
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where xzP  and zzP  are the cross-covariance martix of the state variable and the measurement, and 
the measurement covariance matrix, respectively. The measurement is calculated as shown in Eq. 
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CP is then updated. 
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where ξ is the matrix that defines CP, and the subscripts in 

parentheses (i, j) represent the i-th row and the j-th column. 

The columns of each row represent the x-axis position, the 

x-axis velocity, the y-axis position, and the y-axis velocity, 

respectively. N is the order of the state variable, which is 4.

After the time propagation of CP, the state variable (�xk
-)  

and the error covariance matrix (Pk
-) are calculated. The 

measurement update is then carried out as shown in Eqs. 

(28) and (29).
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row and the j -th column. The columns of each row represent the x-axis position, the x-axis 
velocity, the y-axis position, and the y-axis velocity, respectively. N  is the order of the state 
variable, which is 4. 

After the time propagation of CP, the state variable ( 
kx̂ ) and the error covariance matrix 
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kP ) are calculated. The measurement update is then carried out as shown in Eqs. (28) and (29). 
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To analyze the localization characteristics depending on the type of the filter, a localization 

filter was designed using CKF. CKF is an approximate Bayesian filter based on the cubature rule, 
and it is known that the characteristics of the third-order CKF are similar to those of UKF. For 
the model, a CV model was used, similar to EKF. When the NCE model is not considered, the 
number of state variables is 4, and thus eight Cubature Points (CP) are established (Arasaratnam 
& Haykin 2009). When the distance measurement is obtained, time propagation is performed as 
shown in Eq. (27). 
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state variable and the measurement, and the measurement 

covariance matrix, respectively. The measurement is 

calculated as shown in Eq. (30).
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where xzP  and zzP  are the cross-covariance martix of the state variable and the measurement, and 
the measurement covariance matrix, respectively. The measurement is calculated as shown in Eq. 
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CP is then updated.

The CKF-based localization filter can also be designed 

considering NCE, similar to EKF. In this study, the design 

was implemented using only the channel common bias, and 

the number of state variables is N = 4 + 1. The measurement 

is generated as shown in Eq. (31).
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  is the CP that corresponds to the channel common bias. 
In the case of CKF, it is unnecessary to obtain the Jacobian matrix, which is calculated by 

the first-order Taylor series expansion of a nonlinear function, and only the relational expression 
needs to be accurately described using each CP for the measurement generation. Accordingly, 
the filter design can be easily carried out. 
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(4). For the scale factor error, the values were small in general, although M-3 had a relatively 
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channel common bias, there was some difference between channels, but the error setting and 
estimation results will be analyzed in the algorithm test. 

Table 1 and Fig. 3 show the ranging results before and after the calibration. An average of 
about 70 ranging measurements were obtained on ten reference points,, and the analysis result 
showed that the average error was 29 cm with a standard deviation of 10 cm before the 
calibration. In other words, this indicates that the calibration of the product on the market was 
not properly conducted. For the ranging error after the calibration, the standard deviation was 
similar to that before the calibration, but the average value decreased significantly. 
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where �ξk
-(i, 5) is the CP that corresponds to the channel 

common bias.

In the case of CKF, it is unnecessary to obtain the Jacobian 

matrix, which is calculated by the first-order Taylor series 

expansion of a nonlinear function, and only the relational 

expression needs to be accurately described using each 

CP for the measurement generation. Accordingly, the filter 

design can be easily carried out.

4. ANALYSIS OF THE ALGORITHM 
CHARACTERISTICS BASED ON THE 
EXPERIMENTAL RESULTS

To compare and analyze the performances of the various 

localization algorithms explained in Chapter 3, some 

experiments were conducted. For the IR-UWB equipment, 

four EVK1000 devices (Decawave) shown in Fig. 1 were 

used. Among them, three devices were used as ANs, and 

one device was used as a MN. According to the specification 

provided by Decawave, it is capable of communication up 

to 290 m with a ranging precision of 10 cm.

4.1 Calibration Test

To examine the NCE of the used equipment, three ANs 

were installed and ten reference points were established in 

an environment where LOS is guaranteed, as shown in Fig. 2.  

Then, a MN was located at each reference point, and the 

ranging information was obtained through communication 

with the ANs during a certain time.

Table 1 summarizes the scale factor error and bias for 

each channel estimated based on Eq. (4). For the scale 

factor error, the values were small in general, although M-3 

had a relatively large value. In the case of the bias, all the 

values were positive. As for the establishment of channel 

common bias, there was some difference between channels, 

but the error setting and estimation results will be analyzed 

in the algorithm test.

Table 1 and Fig. 3 show the ranging results before and after 

the calibration. An average of about 70 ranging measurements 

were obtained on ten reference points,, and the analysis result 

showed that the average error was 29 cm with a standard 

deviation of 10 cm before the calibration. In other words, this 

indicates that the calibration of the product on the market 

was not properly conducted. For the ranging error after the 

calibration, the standard deviation was similar to that before 

the calibration, but the average value decreased significantly.

Fig. 1.  IR-UWB module: EVK1000 (Decawave).

Fig. 2.  Calibration test environment.
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4.2 Localization Algorithm Test

A test was conducted to analyze the performances of the 

various localization algorithms explained in Chapter 3 in 

the presence of NCE. Fig. 4 shows the test trajectory. A test 

participant carried a MN, and walked along the trajectory. 

Nine algorithms were used: ILS, DS, DSRM, ILS-C, EKF, 

EKF-EC, EKF-C, CKF, and CKF-C. In this regard, Each 

Channel (EC) indicates that the biases for each channel were 

augmented as the state variable, and Common (C) indicates 

that the channel common bias was augmented as the state 

variable. As three ANs were used, 7th-order filter is operated 

in the case of EC, and 5th-order filter is operated in the case of 

C. Based on the repeated tests, similar results were obtained 

for each algorithm. Among these, one test result was shown 

in Fig. 5. Figs. 5a-i show the localization results for the nine 

algorithms (from ILS to CKF-C). Fig. 5j shows the estimated 

bias for each channel of EKF-EC, Fig. 5k shows the estimated 

common bias for ILS-C, EKF-C, and CKF-C, respectively, 

and Fig. 5l shows the square root of the estimation error 

covariance of the state variable corresponding to the bias 

for EKF-EC and EKF-C, respectively. In Figs. 5a, b, c, e, 

and h, the blue circle marker represents the case in which 

NCE was present, and the red triangular marker represents 

the case in which the localization was performed after the 

calibration. For the test, there was no reference equipment 

that can represent the accurate position of a MN. Thus, the 

localization accuracy was judged by comparing the estimated 

position with the walking trajectory.

Basically, better results were obtained after the calibration 

than before the calibration. However, there are two 

noteworthy points. First, in the case of the DS method, a large 

estimation error was observed in a specific region regardless 

of the calibration. This is because the Red Sea Zone problem 

occurred in the corresponding region (Cho & Kim 2013). 

Second, in the case of the DSRM method, the result before 

Fig. 4.  Test trajectory for evaluating the localization algorithms.

Table 1.  Channel-wise calibration results.

Ranging error before calibration Ranging error after calibration
Channel [m] δ�SFChannel �BChannel Mean Standard deviation Mean Standard deviation

M-1
M-2
M-3

0.00744
0.00829
0.05141

0.25933
0.39504
0.57882

0.21841
0.34629
0.30556

0.11376
0.10387
0.10208

-5.4e-14
-4.4e-14
4.9e-14

0.11301
0.10288
0.07336

Fig. 3.  Ranging results before/after calibration. (a) before calibration (b) 
after calibration.

(a)

(b)
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Fig. 5.  Results of the localization tests according to the algorithms. (a) ILS method (b) DS method (c) DSRM method (d) ILS-C method (e) EKF (f) EKF-EC (g) 
EKF-C (h) CKF (i) CKF-C (j) channel-wise bias estimates (k) common bias estimates (l) error covariance

(a)

(c)

(e)

(b)

(d)

(f)
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Fig. 5.  Continued 

(g)

(i)

(k)

(h)

(j)

(l)
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the calibration was more outstanding, compared to the 

other methods. This is because the error included in the 

ranging measurement was partially eliminated in the process 

of subtracting the square of the ranging measurement for 

the DSRM method, as explained in Section 3.3. Therefore, 

the DSRM technique could show more outstanding 

characteristics in the presence of NCE, compared to the other 

methods.

Based on Figs. 5f, j, and l, the performance of the bias 

estimation for each channel was analyzed. As shown in 

Fig. 5j, the biases for the three channels were gradually 

approximately estimated. However, the convergence rate 

was not fast. The analysis based on Fig. 5l indicates that 

this is because the decrease rate of the estimation error 

covariance of the state variable  corresponding to the bias 

for each channel was slow. Accordingly, a large error was 

observed on the upper left part of the walking trajectory, 

which is before the convergence of the estimation error.

In comparison, the estimation performance of the case 

in which common bias was added to the state variable 

was analyzed based on Figs. 5d, g, i, k, and l. Figs. 5d and 

k show the result where common bias was added and 

estimated together in ILS-C, as explained in Section 3.1. The 

comparison with EKF-C and CKF-C in Fig. 5k indicated that 

similar common bias was estimated. In ILS-C, however, the 

bias is independently estimated for each measurement, and 

thus it does not have convergence characteristics depending 

on the time. As a result, the bias was partially estimated and 

compensated on the walking trajectory. When compared 

to the results of the MfL methods before the calibration 

excluding the DSRM method, relatively outstanding 

performance was observed. On the other hand, Figs. 5g 

and i show the localization results where the common 

bias was estimated in EKF-C and CKF-C, respectively. 

The results were similar to those of the ILS, DSRM, and 

EKF with the calibration. As for the reason analyzed 

based on Figs. 5k and l, they showed more outstanding 

characteristics than EKF-EC because the estimation speed 

of the state variable corresponding to the common bias was 

fast. Also, they showed more outstanding characteristics 

than ILS-C because the common bias estimate converged 

as the measurement update was carried out since the 

measurement used for the estimation at each epoch has the 

characteristics of an infinite impulse response filter which 

uses all the previous measurements together.

Fig. 6 shows the average computation time for each epoch 

obtained through the tic/toc commands of Matlab. CKF has 

a relatively large computational load as it performs the time 

propagations of CPs that correspond to twice the dimension 

of the system. ILS also has a large computational load as the 

calculation is based on iterative processing. On the other 

hand, in the case of DSRM, the number of measurements 

decreases by 1 through measurement differencing, in terms 

of the calculation.

Based on the results of this study, the following conclusions 

can be drawn. Localization error occurs when calibration is 

not performed in the presence of NCE, and this error can be 

compensated through the bias estimation for each channel 

or the common bias estimation. The results indicated that 

the methods using the common bias estimation showed 

more outstanding performance than the methods using the 

bias estimation for each channel. This is because every bias 

for each channel had a positive value and the difference 

between channels was not large. The DSRM technique was 

found to have relatively outstanding characteristics as it 

was less affected by NCE despite the shortest computation 

time compared to the other methods. EKF-C and CKF-C 

showed the most outstanding performances although the 

computational load was large. In particular, considering the 

ease of filter design, CKF-C was easier to use than EKF-C.

5. CONCLUSIONS

In this study, the performances of the various algorithms 

for the wireless localization using IR-UWB-based ranging 

measurement were compared and analyzed. In particular, 

when NCE was included in the ranging measurement, the 

localization characteristics of nine algorithms (ILS, DS, 

DSRM, ILS-C, EKF, EKF-EC, EKF-C, CKF, and CKF-C) were 

first analyzed based on the algorithm equation expansion 

process, and conclusions were drawn based on the results 

of an experiment.

The analysis of the experiment indicated that the NCE 

Fig. 6.  Elapsed times of the localization algorithms.
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for each channel had a positive value at all times, and the 

difference between channels was not large. In this case, 

among the MfL methods, the DSRM method showed 

outstanding localization characteristics although the error 

for each channel was not considered. In the case of MbKF, 

when the biases for each channel were augmented to the 

state variable, improved results could not be obtained as the 

estimation speed was slow. However, when common bias 

was augmented to the state variable and was estimated/

compensated, the bias estimation speed was fast, and 

accordingly, the localization performance was relatively 

outstanding.

CKF-C had the longest computation time, and the DSRM 

method had the shortest computation time. Therefore, the 

DSRM method showed outstanding characteristics when 

the computation time and the localization performance 

were considered, and CKF-C showed relatively outstanding 

characteristics when the accuracy and the ease of filter 

design were considered.
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