• Title/Summary/Keyword: Robot hands

Search Result 98, Processing Time 0.027 seconds

Control of Grasp Forces for Robotic Hands Based on Human Capabilities (인간의 손의 능력을 응용한 로봇 핸드의 힘 제어)

  • Kim, Il-Hwan
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.71-81
    • /
    • 1996
  • This paper discusses a physiological approach motivated by the study of human hands for robot hand force control. It begins with an analysis of the human's grasping behavior to see how humans determine the grasp forces. The human controls the grasp force by sensing the friction force, that is, the weight of the object which is felt on his hand, but when slip is detected by sensing skin acceleration, the grasp force becomes much greater than the minimum force required for grasping by adding the force which is proportional to the acceleration. And two methods that can predict when and how fingers will slip upon a grasped object are considered. To emulate the human's capabilities, we propose a method for determination of as grasp force, which uses the change in the friction force. Experimental results show that the proposed method can be applied to control of robot hands to grasp objects of arbitrary weight stably without skin-like slip sensors.

  • PDF

A Study on Specifying Compliance Characteristics for Assembly Tasks Using Robot Hands: Two Dimensional Model (로봇 손을 이용한 조립 작업의 컴플라이언스 특성 설정에 관한 연구:2차원 모델)

  • Kim, Byoung-Ho;Oh, Sang-Rok;Yi, Byung-Ju;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1171-1177
    • /
    • 2001
  • This paper provides a guideline for specifying the operational compliance characteristics considering the location of compliance center and the grasp points in assembly tasks using robot hands. Through various assembly tasks, we analyze the conditions of the achievable operational stiffness matrix with respect to the location of compliance center and the grasp points. Also, we show that some of coupling stiffness elements in the operational space cannot be planned arbitrarily. As a result it is concluded that the location of compliance center on the grasped object and the grasp points play important roles for successful assembly tasks and also the operational stiffness matrix should be carefully specified by considering those conditions.

  • PDF

A Guideline for Specifying Compliance Characteristics of Two Dimensional Assembly Tasks using Robot Hands (로봇 손을 이용한 2차원 조립 작업의 컴플라이언스 특성 설정 기준)

  • 김병호;오상록;이병주;서일홍
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.78-78
    • /
    • 2000
  • This paper provides a guideline for specifying the operational compliance characteristics considering the location of compliance center and the grasp points in assembly tasks using robot hands, To be specific, some of coupling stiffness elements cannot be planned arbitrary. Through T-type assembly task, we analyze the conditions of the achievable operational stiffness matrix with respect to the location of compliance center and the grasp points. It is concluded that the location of compliance center on the grasped object and the grasp points play important roles for successful assembly tasks and also the operational stiffness matrix should be carefully specified by considering those conditions.

  • PDF

A Design and Implementation of Educational Mobile Robot System including Remote Control Function (원격 제어 기능을 포함한 교육용 모바일 로봇 시스템의 설계 및 구현)

  • Chung, Joong-Soo;Jung, Kwang-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.33-40
    • /
    • 2015
  • This paper presents the design and implementation of the educational remote controlled robot system including remote sensing in the embedded environment. The design of sensing information processing, software design and template design mechanism for the programming practice are introduced. LPC1769 using Cortex-M3 core as CPU, LPCXPRESSO as debugging environment, C language as firmware development language and FreeRTOS as OS are used in development environment. The control command is received via RF communication by the server and the robot system which is operated by driving the various sensors. The educational procedure is from robot demo operation program as hands-on practice and then compiling, loading of the basic robot operation program, already supplied. Thereafter the verification is checked by using the basic robot operation to allow demo operation such as hands-on-training procedure. The original protocol is designed via RF communication between server and robot system, and the satisfied performance result is presented by analyzing the robot sensing data processing.

Development of the automatic soldering system using robot (로보트를 이용한 납땜 자동화 시스템의 개발)

  • 이종원;이춘식;박종오;이대엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.295-298
    • /
    • 1988
  • For the automation of the manual soldering process through robot technology, two main tasks have to be achieved: Control of various soldering parameters and realization of flexible tool movements like human hands. In this paper a method for attaining these tasks is presented and analyzed.

  • PDF

Development of 3-axis finger force sensor for an intelligent robot's hand (로봇의 지능형 손을 위한 3축 손가락 힘센서 개발)

  • Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.411-416
    • /
    • 2006
  • This paper describes the development of a 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand. In order to safely grasp an unknown object, robot's hand should measure the weight of an object and the force of grasping direction simultaneous. But, in the published papers, the grippers and hands equippd with the force sensor that could only measure the force of grasping direction, and grasped objects using their sensors. These grippers and hands can't safely grasp unknown objects, because they can't measure the weight of it. Thus, it is necessary to develop 3-axis force sensor that can measure the weight of an object and the force of grasping direction for an intelligent gripper. In this paper, 3-axis finger force sensor to grasp an unknown object safely in an intelligent robot's hand was developed. In order to fabricate a 3-axis finger force sensor, the sensing elements were modeled using parallel plate beams, and the theoretical analysis was performed to determine the size of sensing elements, then the 3-axis finger force sensor was fabricated. Also, the characteristic test of the developed 3-axis finger force sensor was performed.

A Study on Design of Smart Home Service Robot McBot II (스마트 홈 서비스 로봇 맥봇II의 설계에 관한 연구)

  • Kim, Seung-Woo;Kim, Hi-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1824-1832
    • /
    • 2011
  • In this paper, a smart home service robot McBot II is newly developed in much more practical and intelligent system than McBot I which we had developed a few years ago. Thus far, vacuum-cleaners have lightened the burden of household chores but the operational labor that vacuum-cleaners entail has been very severe. Recently, a cleaning robot was commercialized to solve but it also was not successful because it still had the problem of mess-cleanup, which pertained to the clean-up of large trash and the arrangement of newspapers, clothes, etc. Hence, we develop a new home mess-cleanup robot McBot II to completely overcome this problem on real environments. The mechanical design and the basic control of McBot II, which performs mess-cleanup function etc. in house, is actually focused in this paper. McBot II is mechanically modeled in the same method that the human works in door by using the waist and the hands. The big-ranged vertical lift and the shoulder joints to be able to forward move are mechanically designed for the operating function as the human's waist when the robot works. The mobility of McBot II is designed in the holonomic mobile robot for the collision avoidance of obstacle and the high speed navigation on the small area in door. Finally, good performance of McBot II, which has been optimally desinged, is confirmed through the experimental results for the control of the robotic body, mobility, arms and hands in this paper.

Synthetic feedback information construction to control a Networked Robot

  • Hong, Soon-Hyuk;Jeon, Jae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.107.6-107
    • /
    • 2002
  • $\textbullet$ An autonomous mobile robot was controlled through the Internet. $\textbullet$ For the direct control, the feedback data should be provided properly. $\textbullet$ Therefore, an efficient communication scheme should be defined. $\textbullet$ To overcome the transmission delay, the highly abstracted message format was used. $\textbullet$ As the feedback data, the real image sequences may suffer the transmission delay or loss of content. $\textbullet$ To resolve this, the feature information was used to construct the synthetic feedback information. $\textbullet$ By doing this, the operator could feel the hands-on control with an Internet-based robot.

  • PDF

Natural Resolution of DOF Redundancy in Execution of Robot Tasks;Stability on a Constraint Manifold

  • Arimoto, S.;Hashiguchi, H.;Bae, J.H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.180-185
    • /
    • 2003
  • In order to enhance dexterity in execution of robot tasks, a redundant number of degrees-of-freedom (DOF) is adopted for design of robotic mechanisms like robot arms and multi-fingered robot hands. Associated with such redundancy in the number of DOFs relative to the number of physical variables necessary and sufficient for description of a given task, an extra performance index is introduced for controlling such a redundant robot in order to avoid arising of an ill-posed problem of inverse kinematics from the task space to the joint space. This paper shows that such an ill-posedness of DOF redundancy can be resolved in a natural way by using a novel concept named “stability on a manifold”. To show this, two illustrative robot tasks 1) robotic handwriting and 2) control of an object posture via rolling contact by a multi-DOF finger are analyzed in details.

  • PDF

Inverse Kinematics of Robot Fingers with Three Joints Using Neural Network (신경회로망을 이용한 3관절 로봇 손가락의 역기구학)

  • Kim, Byeong-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.159-162
    • /
    • 2007
  • The inverse kinematics problem in robotics is an essential work for grasping and manipulation tasks by robotic and humanoid hands. In this paper, an intelligent neural learning scheme for solving such inverse kinematics of humanoid fingers is presented. Specifically, a multi-layered neural network is utilized for effective inverse kinematics, where a dynamic neural learning algorithm is employed. Also, a bio-mimetic feature of general human fingers is incorporated to the learning scheme. The usefulness of the proposed approach is verified by simulations.

  • PDF