• Title/Summary/Keyword: Robot data

Search Result 1,510, Processing Time 0.029 seconds

Metadata design and system development for autonomous data survey using unmanned patrol robots (무인순찰로봇 활용 데이터 기록 자동화를 위한 메타데이터 정의 및 시스템 구축)

  • Jung, Namcheol;Lee, Giryun;Nho, Hyunju
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.267-268
    • /
    • 2023
  • Unmanned patrol robots are currently being developed for autonomous data survey in construction sites. As the amount of data acquired by robots increases, it is important to utilize proper metadata and system to manage data flow. In this study, we developed three materials, metadata design, robot system and web system, in the purpose of automating construction site data survey using unmanned patrol robots. The metadata was mainly designed to represent when and where raw data was acquired. To identify the location of data acquired, localization data from SLAM algorithm was converted to suit the construction drawings. The robot system and web system were developed to generate, store and parse the raw data and metadata automatically. The materials developed in this study was adopted to Boston Dynamics SPOT, a quadruped robot. Autonomous data survey of 360-picture and environment sensor was tested in two construction sites and the robot worked as intended. As a further study, development on the autonomous data survey to improve the convenience and productivity will be continued.

  • PDF

A Compensation Method of an Accelerometer for an Acceleration-based Disturbance Observer Control of a Robot Manipulator (로봇 매니퓰레이터의 가속도 기반 외란관측제어를 위한 저가용 가속도 센서 보정 방법)

  • Bae, Yeong-Geol;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.6
    • /
    • pp.651-656
    • /
    • 2014
  • This paper presents a compensation method for an accelerometer to measure acceleration data accurately when a robot manipulator moves slowly. Although the accelerometer works fine under the fast movement of a robot manipulator, low cost accelerometers provide relatively inaccurate acceleration data under slow movements. In order to correct the error of the sensor data in the slow motion, correction factors are obtained experimentally. Then those corrected data are used for the disturbance observer. Experimental studies of the position control of a robot manipulator are conducted by applying the DOB (Disturbance Observer) control using corrected acceleration data.

Measurement Data Comparison of Fast SAR Measurement System by Probe Arrays with Robot Scanning SAR Measurement System

  • Kim, Jun Hee;Gimm, Yoon-Myoung
    • Journal of electromagnetic engineering and science
    • /
    • v.14 no.4
    • /
    • pp.336-341
    • /
    • 2014
  • Dosimetry of radiating electromagnetic wave from mobile devices to human body has been evaluated by measuring Specific Absorption Rate (SAR). Usual SAR measurement system scans the volume by robot arm to evaluate RF power absorption to human body from wireless devices. It is possible to fast estimate the volume SAR by software deleting robot moving time with the 2D surface SAR data acquired by arrayed probes. This paper shows the principle of fast SAR measurement and the measured data comparison between the fast SAR system and the robot scanning system. Data of the fast SAR is well corresponding with data of robot scanning SAR within ${\pm}3$ dB, and its dynamic range covers from 10 mW/kg to 30 W/kg with 4.8 mm probe diameter.

Following a Wall by an Mobile Robot with Sonar Sensors and Infrared Sensors (초음파센서와 적외선센서를 갖는 이동로봇의 벽면 따르기)

  • 윤정원;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.423-423
    • /
    • 2000
  • This paper proposes an effective algorithm for following a wall by an autonomous mobile robot with sonar sensors and infrared sensors in an indoor environment. The proposed method uses deadreckoning to estimate the current position and orientation of a mobile robot. Sonar sensor data are used to estimate shape and position of wall using proposed algorithm. Infrared sensor data are used as assistant when sonar sensor data is uncertain. Simulation results using mobile robot show that the proposed algorithm is proper for the following wall.

  • PDF

A Data Fusion Method of Odometry Information and Distance Sensor for Effective Obstacle Avoidance of a Autonomous Mobile Robot (자율이동로봇의 효율적인 충돌회피를 위한 오도메트리 정보와 거리센서 데이터 융합기법)

  • Seo, Dong-Jin;Ko, Nak-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.686-691
    • /
    • 2008
  • This paper proposes the concept of "virtual sensor data" and its application for real time obstacle avoidance. The virtual sensor data is virtual distance which takes care of the movement of the obstacle as well as that of the robot. In practical application, the virtual sensor data is calculated from the odometry data and the range sensor data. The virtual sensor data can be used in all the methods which use distance data for collision avoidance. Since the virtual sensor data considers the movement of the robot and the obstacle, the methods utilizing the virtual sensor data results in more smooth and safer collision-free motion.

The improvement of MIRAGE I robot system (MIRAGE I 로봇 시스템의 개선)

  • 한국현;서보익;오세종
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.605-607
    • /
    • 1997
  • According to the way of the robot control, the robot systems of all the teams which participate in the MIROSOT can be divided into three categories : the remote brainless system, the vision-based system and the robot-based system. The MIRAGE I robot control system uses the last one, the robot-based system. In the robot-based system the host computer with the vision system transmits the data on only the location of the ball and the robots. Based on this robot control method, we took part in the MIROSOT '96 and the MIROSOT '97.

  • PDF

Automatic Derivation of Explicit Robot Programs from Task-Level Commands (고수준 명령어로부터 명시적 로봇 프로그램 자동 유도방법)

  • Seo, Yoon-Ho;Cheong, Deok-Ho
    • IE interfaces
    • /
    • v.12 no.2
    • /
    • pp.305-311
    • /
    • 1999
  • Robot task program is needed to control and manage a Robot without explicitly describing the robot program by user which includes commands, procedures, geometric and signal data in the detail level. To use the Robot task program, a computer system is required to convert the Robot task into the Robot program, which can be understood by the Robot. In this paper, the systemic method for automatic generation of explicit Robot programs (ERP) from task-level commands is described. Specifically, a 3-step procedure including Robot task decomposition, task synchronization and ERP generation is presented.

  • PDF

The test bed for teleoperated space robot (우주로봇 원격제어 테스트 베드)

  • 김동구;박종오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.760-763
    • /
    • 1997
  • Using telesensor programming method, we control the space robot which has two 2-DOF manipulators. To make this control system, we devide total works by elemental operation. And we make a simulation system that can simulate sensors and robot. In the simulation system, we make a sensor data and robot paths by "Teaching by showing" method. And using these data, we control the real space robot. This off-line method can solve long time delay problem in teleoperation.operation.

  • PDF

Intelligent mobile Robot with RSSI based Indoor Location Estimation function (RSSI기반 위치인식기능 지능형 실내 자율 이동로봇)

  • Yoon, Ba-Da;Shin, Jae-Wook;Kim, Seong-Gil;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.449-452
    • /
    • 2007
  • An intelligent robot with RSSI based indoor location estimation function was designed and implemented. A wireless sensor node was attached to the robot to received the location data from the indoor location estimation function. Spartan III was used as the main control device in the mobile robot. The current location data collected from the indoor location estimation system was transferred to the mobile robot and server through Zigbee/IEEE 802.15.4 wireless communication of the sensor node. Once the location data is received, the sensor node senses the direction of the robot head and directs the robot to move to its destination. Indoor location estimation intelligent robot is able to move efficiently and actively to the user appointed location by implementing the proposed obstacles avoidance algorithm. This system is able to monitor real-time environmental data and location of the robot using PC program. Indoor location estimation intelligent robot also can be controlled by executing the instructions sent from the PC program.

  • PDF

A Efficient Data Transmission Protocol for a Remote Controlled Robot in Wireless Links (무선링크에서 효과적인 로봇제어 데이터 전송 방법)

  • Cho Dong-Kwon;Chun Sang-Hun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.9A
    • /
    • pp.878-883
    • /
    • 2006
  • New emerging wireless broadband internet can make many broadband multimedia services. The networked intelligent mobile robot service is one of the new services. In the networked robot control, both the on-line real-time control and the reliability of control data transmission are very important. Considering the real-time control and data reliability, an efficient transmission method based on UDP protocol is proposed. The proposed method allocates the priority to the robot control data and the transmission of the robot data at the base station is carried out in duplicate manner. NS-2 simulation results show that the proposed scheme has a very low packet delay and low packet errors.