• 제목/요약/키워드: Robot Study

검색결과 2,859건 처리시간 0.04초

다관절 로봇의 동적 시뮬레이터 설계 (A Design of Dynamic Simulator of Articulated Robot)

  • 박인만;정성원
    • 한국산업융합학회 논문집
    • /
    • 제18권2호
    • /
    • pp.75-81
    • /
    • 2015
  • This study proposes an articulated robot control system using an on/off-line robot graphic simulator with multiple networks. The proposed robot control system consists of a robot simulator using OpenGL, a robot controller based on a DSP(TMS320) motion board, and the server/client communication by multiple networks. Each client can control the real robot through a server and can compare the real robot motion with the virtual robot motion in the simulation. Also, all clients can check and analyze the robot motion simultaneously through the motion image and data of the real robot. In order to show the validity of the presented system, we present an experimental result for a 6-axis vertical articulated robot. The proposed robot control system is useful, especially, in the industrial fields using remote robot control as well as industrial production automation with many clients.

초.중등 학생의 로봇교육을 위한 수학.과학과 교육과정 연계 로봇 소양 교육과정 개발 (A Curriculum Development on the Robot Literacy Related with A mathematics and Science Curriculum For Elementary and Secondary School Students)

  • 신승용;조혜경;김미량
    • 컴퓨터교육학회논문지
    • /
    • 제16권6호
    • /
    • pp.55-70
    • /
    • 2013
  • 본 연구에서는 로봇 교육의 지속 발전성을 제고하고 지원할 목적으로 로봇 소양 교육과정을 구성해서 제안해 보았다. 이를 위해서 로봇 소양 교육을 기존의 문해력에 관한 내용을 참고하여 정의했으며, 아울러 로봇 소양의 요소들도 모두 다섯 가지로 나누어 제시했다. 여기서 제시한 로봇 소양 교육의 영역은 로봇의 기초 영역과 로봇 공학의 세 가지 요소를 바탕으로 한 로봇과 함께하는 측정, 관찰, 로봇으로 만드는 운동과 표현, 나만의 로봇 설계 그리고 종합적 활동 영역으로 제시하였다. 한편, 로봇 소양 교육과정 개발 단계는 Tyler(1949)의 고전적인 교육과정 개발모형을 적용하여 로봇 소양 교육과정 구성의 타당성과 신뢰성을 확보하고자 했으며 이를 바탕으로 기존 초, 중학교의 수학, 과학교과 교육과정을 분석하고 로봇 소양 교육과정을 제안하였다.

  • PDF

텐던-튜브를 이용한 인체모방형 로봇핸드 및 암 개발 (Development of Anthropomorphic Robot Hand and Arm by Tendon-tubes)

  • 김두형;신내호;오명호
    • 제어로봇시스템학회논문지
    • /
    • 제20권9호
    • /
    • pp.964-970
    • /
    • 2014
  • In this study we have developed an anthropomorphic robot hand and arm by using tendon-tubes which can be used for people's everyday life as a robot's dynamic power transmission device. Most previous robot hands or arms had critical problem on dynamic optimization due to heavy weight of power transmission parts which placed on robot's finger area or arm area. In order to resolve this problem we designed light-weighted robot hand and arm by using tendon-tubes which were consisted of many articulations and links just like human's hand and arm. The most prominent property of this robot hand and arm is reduction of the weight of robot's power transmission part. Reduction of weight of robot's power transmission parts will allow us to develop energy saving and past moving robot hands and arms which can be used for artificial arms. As a first step for real development in this study we showed structural design and demonstration of simulation of possibility of a robot hand and arm by tendon-tube. In the future research we are planning to verify practicality of the robot hand and arm by applying sensing and controlling method to a specimen.

청소로봇의 최적비용함수를 고려한 지도 작성에 관한 연구 (A Study on the Map-Building of a Cleaning Robot Base upon the Optimal Cost Function)

  • 강진구
    • 디지털산업정보학회논문지
    • /
    • 제5권3호
    • /
    • pp.39-45
    • /
    • 2009
  • In this paper we present a cleaning robot system for an autonomous mobile robot. Our robot performs goal reaching tasks into unknown indoor environments by using sensor fusion. The robot's operation objective is to clean floor or any other applicable surface and to build a map of the surrounding environment for some further purpose such as finding the shortest path available. Using its cleaning robot system for an autonomous mobile robot can move in various modes and perform dexterous tasks. Performance of the cleaning robot system is better than a fixed base redundant robot in avoiding singularity and obstacle. Sensor fusion using the clean robot improves the performance of the robot with redundant freedom in workspace and Map-Building. In this paper, Map-building of the cleaning robot has been studied using sensor fusion. A sequence of this alternating task execution scheme enables the clean robot to execute various tasks efficiently. The proposed algorithm is experimentally verified and discussed with a cleaning robot, KCCR.

Robot software component interface abstractions for distributed sensor and actuator

  • Yang, Kwang-Woong;Won, Dae-Heui;Choi, Moo-Sung;Kim, Hong-Seok;Lee, Tae-Geun;Kwon, Sang-Joo;Park, Joon-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.2285-2289
    • /
    • 2005
  • Robot is composed of various devices but, those are incompatible with each other and hardly developing reusable control software. This study suggests standard abstract interface for robot software component to make portable device and reusable control software of robot, based on familiar techniques to abstract device in operating systems. This assures uniform abstracted interface to the device driver software like sensor and actuator and, control program can be transparent operation over device. This study can separately and independently develop devices and control software with this idea. This makes it possible to replace existing devices with new devices which have an improved performance.

  • PDF

국방로봇 신속 전력화를 위한 운용개념 수립 방법론 및 획득체계 개선방향 (Methodology for Establishment of Operational Concept for Speed-Up of Defense Robot and Improvement Direction of the Defense Acquisition System)

  • 엄홍섭
    • 로봇학회논문지
    • /
    • 제13권3호
    • /
    • pp.182-189
    • /
    • 2018
  • The purpose of this paper is to suggest the methodology for the establishment of operational concept for speed-up of defense robot and improvement direction of the defense acquisition system for the defense robot. In order to achieve this goal, the current defense acquisition system was analyzed into long-term planning, mid-term programming, and project execution stages. And I suggest the methodology for the establishment of operational concept for speed-up of defense robot and direction of development of the defense robot acquisition system considering the characteristics of the robot in terms of core technologies of robot, robot ecosystem and effectiveness-based-robot-design, respectively. Based on the methodology for establishment of the operational concept of defense robot and development direction of the defense acquisition system presented in this study, it will be possible to design efficiently the defense robot in the future.

산업용 로보트의 효율적인 작동 데이터 산출방법에 관한 연구 (A study on the efficient calculation method of the motion data in the industrial robot)

  • 이순요;권규식;노근래
    • 대한인간공학회지
    • /
    • 제9권2호
    • /
    • pp.21-28
    • /
    • 1990
  • The robot motion control in the industrial robot is generally executed by the teach pendant. But, it requires much teaching time and workload to the operators. This study suggests the use of the robot motion control method by the computed keyboard in the industrial robot instead of the teach pendant. TES/CCS(Teaching Expert System/Cartesian Coordinate System) and TES/WCS(Teaching Expert System/World Coordinate System) that have been proposed to improve the robot motion control are applied for this concept. This study is intended to improve the robot motion control in TES/CCS. Parameter limitation problems in getting the motion data on position and posture of the robot in macro motion control are solved by proposed geometric algorithm. This result demonstrates reduction of the average teaching task time to the teaching position.

  • PDF

A Study on Humanoid Robot Control Method Using Zigbee Wireless Servo Motor with Sensor Network

  • Shin, Dae-Seob;Lee, Hyeong-Cheol
    • 전기전자학회논문지
    • /
    • 제16권3호
    • /
    • pp.235-243
    • /
    • 2012
  • In this study, we developed two legged multi-joint robot by using wireless servo motor that was applied by wireless sensor network technology, which is widely used recently, and performed an experiment of walking method of two legged multi-joint robot. We constructed the star network with servo motors which were used at each joint of two-legged robot. And we designed the robot for operation by transmission of joint control signal from main control system or by transmission of the status of each joint to the main control system, so it operates with continuously checking the status of joints at same time. We developed the humanoid robot by using wireless digital servo motor which is different from existing servo motor control system, and controlled it by transmitting the information of angles and speeds of robot joints to the motor(node) as a feedback through main control system after connecting power and setting up the IDs to each joint. We solved noisy problem generated from wire and wire length to connection point of the control device by construction of the wireless network instead of using existing control method of wiring, and also solved problem of poor real time response to gait motion by controlling the position with continuous transmission of control signals to each joint. And we found that the effective control of robot is able by performing the simulation on walking motion in advance with the developed control algorithm which was downloaded into installed memory. Also we performed the stable walking with two-legged robot by attaching pressure sensor to robot sole. And we examined the robot gait operated by application of calculated algorithm on robot movement to each joint. In this study, we studied the method of controlling robot gait motion by using wireless servo motors and measured the torque applied to each joint, and found that the developed wireless servo motor by ZigBee sensor network offers easier control of two legged robot gait and better circuit configuration of it than the existing wired control system could do.

조립용 로봇의 오프라인 교시를 위한 영상 정보의 이용에 관한 연구 (Utilization of Vision in Off-Line Teaching for assembly robot)

  • 안철기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 춘계학술대회논문집 - 한국공작기계학회
    • /
    • pp.543-548
    • /
    • 2000
  • In this study, an interactive programming method for robot in electronic part assembly task is proposed. Many of industrial robots are still taught and programmed by a teach pendant. The robot is guided by a human operator to the desired application locations. These motions are recorded and are later edited, within the robotic language using in the robot controller, and play back repetitively to perform robot task. This conventional teaching method is time-consuming and somewhat dangerous. In the proposed method, the operator teaches the desired locations on the image acquired through CCD camera mounted on the robot hand. The robotic language program is automatically generated and downloaded to the robot controller. This teaching process is implemented through an off-line programming software. The OLP is developed for an robotic assembly system used in this study. In order to transform the location on image coordinates into robot coordinates, a calibration process is established. The proposed teaching method is implemented and evaluated on an assembly system for soldering electronic parts on a circuit board. A six-axis articulated robot executes assembly task according to the off-line teaching in the system.

  • PDF