• Title/Summary/Keyword: Robot Safety

Search Result 412, Processing Time 0.026 seconds

Development of Autonomous Algorithm for Boat Using Robot Operating System (로봇운영체제를 이용한 보트의 자율운항 알고리즘 개발)

  • Jo, Hyun-Jae;Kim, Jung-Hyeon;Kim, Su-Rim;Woo, Ju-Hyun;Park, Jong-Yong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.121-128
    • /
    • 2021
  • According to the increasing interest and demand for the Autonomous Surface Vessels (ASV), the autonomous navigation system is being developed such as obstacle detection, avoidance, and path planning. In general, autonomous navigation algorithm controls the ship by detecting the obstacles with various sensors and planning path for collision avoidance. This study aims to construct and prove autonomous algorithm with integrated various sensor using the Robot Operating System (ROS). In this study, the safety zone technique was used to avoid obstacles. The safety zone was selected by an algorithm to determine an obstacle-free area using 2D LiDAR. Then, drift angle of the ship was controlled by the propulsion difference of the port and starboard side that based on PID control. The algorithm performance was verified by participating in the 2020 Korea Autonomous BOAT (KABOAT).

Development of Control and HMI for Safe Robot Assisted Minimally Invasive Surgery (최소침습수술용 로봇의 안전성을 위한 제어 및 HMI 개발)

  • Jung, Hoi-Ju;Song, Hyun-Jong;Park, Jang-Woo;Park, Shin-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1048-1053
    • /
    • 2011
  • Recently, robots have been used in surgical area. Robotic surgery in Minimally Invasive Surgery gives many advantages to surgeons and patients both. This study introduce a robotic assistant to improve the safety of telerobotic Minimally Invasive Surgical procedures. The master-slave system is applied to the telerobotic surgical system with the master arm, which control the system, and slave robot which operates the surgery on the patient body. By using a 3-DOF master arm, the surgeon can control the 6-DOF surgical robot under the constraint of fulcrum point. This paper explains the telerobotic surgical system and confirms the system with the precision of the robot control related to the fulcrum point to enhance the safety.

Identification of Hazard for Securing the Safety of Unmanned Parcel Storage Device System Using Robot Technology

  • Park, Jae Min;Kim, Young Min
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.4
    • /
    • pp.132-139
    • /
    • 2022
  • The development of the fourth industrial revolution and logistics 4.0 related technology, the growth of the e-commerce market, and the transition to a non-face to face society due to the pandemic are accelerating the growth of the logistics industry. Due to the growth of the logistics industry, various services are emerging to meet the requirements of the market, and research and technology development related to the parcel storage, which is an important element of the last mile service, is also underway. In the past, if it was difficult to deliver the goods directly to the recipient, the parcel storage installed near the delivery location was used, but the usability was not good and the storage of the goods was limited. In addition, the existing parcel storage has a lot of functional limitations compared to the advanced logistics technology, so it is necessary to develop a device that improves it. Therefore, this study conducted to secure safety for unmanned parcel storage devices with robot technology to improve usability and functionality in line with the advanced logistics industry. Based on ISO 10218, an industrial robot related standard, risk identification studies were conducted to derive results that contribute to the development of devices under development.

A Study on Trot Walking for Quadruped Walking Robot (4족 보행로봇의 Trot 보행에 관한 연구)

  • Bae Cherl-O;Ahn Byeong-Won;Kim Hyun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1418-1423
    • /
    • 2004
  • A legged robot is friendly to human because it is resemble to human. And the robot can obtain support points freely because it has high degree of freedom for several joint as compared with a wheeled robot. Also the robot can create the relative position at desired position between support position and robot. The joint of robot cu used as manipulator. On the contrary the mechanism of robot is complicated to have many joint and moving speed is lower than wheeled robot. Also the legged robot is needed a special control not to fall on the ground because the robot is easy to vibrate when it is moving. The 4 leg structure is the minimum leg numbers not to fall and to realize safety gait continuously. A trot gait is investigated through experiments using a quadruped walking robot named TITAN-VIII.

Optimal Swimming Motion for Underwater Robot, Crabster (수중유영로봇 Crabster의 최적 유영 구현)

  • Kim, Daehyun;Lee, Jihong
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.4
    • /
    • pp.284-291
    • /
    • 2012
  • Recently, development of underwater robot has actively been in progress in the world as ROV(Remotely Operator Vehicle) and AUV(Autonomous Unmmanded Vehicle) style. But KIOST(Korea Institute of Ocean Science and Technology), beginning in 2010, launched the R&D project to develop the robot, dubbed CRABSTER(Crab + (Lob)ster) in a bid to enhance the safety and efficiency of resource exploration. CRABSTER has been designed to be able to walk and swim with its own legs without screws. Among many research subjects regarding CRABSTER, optimal swimming patterns are handled in this paper. In previous studies, drag forces during one period with different values for angle of each joint were derived. However kinematics of real-robot and fluid-dynamics are not considered. We conducted simulations with an optimization algorithm for swimming by considering simplified fluid dynamics in this paper. Drag-coefficients applied to the simulation were approximated values calculated by CFD(Computational Fluid Dynamics : Tecplot 360, ANSYS). In addition, optimized swimming patterns were applied to a real robot. The experiments with the real robot were conducted in circumstances in the water. As a result, when the experiments were carried out in the water, a regular pattern of drag force output came out depending on the movement of the robot. We confirmed the fact that the drag forces from the simulation and the experiment has a high similarity.

A Study for Usability and Designing Manual Controller of a Curtain‐wall Installation Robot (커튼월 설치 로봇 컨트롤러의 설계 및 사용성 평가에 관한 연구)

  • Lee, Seung-Yeol;Seok, Jae-Heuck;Han, Jung-Wan;Kim, Byung-Hwa;Han, Chang-Soo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.71-80
    • /
    • 2006
  • A construction robot has been developed for higher productivity and better safety in various construction fields. Especially, curtain wall is suitable for outer wall material of tall commercial building and apartment complexes. This heavy material is, however, hard to install with a manpower and outdated equipment. For this reason, the prototype of ASCI (Automation System for Curtain wall Installation) was developed. This system has a robot controller(i.e. hand-held remote control unit) for the transfer information signal between human operator and robot system. Although study has been conducted on manual controller of ASCI, hardly any information is known about the operator's opinion. In this study, a questionnaire was completed by operator to get their opinion about aspects which need to design a more comfortable and productive manual controller of construction machinery, robot included. Through the result of study, it is expected that this technical data is contributed to the robot controller design for comfort and productivity of various industrial machinery.

Intelligent Space and Ontological Network System

  • Yamaguchi, Toru;Sato, Eri;Murakami, Hiroki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.126-129
    • /
    • 2003
  • The robot has recently emerged as a factor in the daily lives of humans, taking the form of a mechanical pet or similar source of entertainment. A robot system that is designed to co-exist with humans, i.e., a coexistence-type robot system, is important to be "it exists in various environments with the person, and robot system by which the interaction of n physical, informational emotion with the person etc. was valued". When studying the impact of intimacy in the human/robot relationship, we have to examine the problems that can arise as a result of physical intimacy(coordination on safety in the hardware side and a soft side). Furthermore, We should also consider the informational aspects of intimacy (recognition technology, and information transport and sharing).

  • PDF

Safety Design analysis of a Robot Hand for Accurate Grasping Various Objects (정밀한 파지를 할 수 있는 로봇 손의 안정성 평가)

  • Lee, Min-Gyu;Lee, Yong-Hoon;Yim, Hong-Jae;Lee, Yong-Kwun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1203-1210
    • /
    • 2007
  • Robots have begun to perform various tasks on replacing the human in the daily life such as cleaning, entertainments etc. In order to accomplish the effective performance of intricate and precise tasks, robot hand must have special capabilities, such as decision making in given condition, autonomy in unknown situation and stable manipulation of object. In this study, we addresses the development of a 3-fingered humanoid robot hand system. We execute static analysis, vibration analysis and flexible dynamics to reserve stability at the design. Grasp motion of the finger uses a linear actuator and gears. Motion can be distinguished into four parts depending on the grasping thin paper, sphere, and column. In each motion, we compare the displacement of the case to be rigid with the case to be flexible. As a result, manufactured and feasibility of the robot hand is validated through preliminary experiments.

  • PDF

Development of Thigh Muscular Strength Assistance Robot for Workers (작업자들을 위한 대퇴 근력 보조 로봇의 개발)

  • Kim, Jung-Yup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.622-628
    • /
    • 2013
  • This paper describes the development of a thigh-muscle strength-assistance robot, which is a kind of wearable robot. For practicality and commercialization, we proposed three fundamental concepts: the reduction of the thigh-muscle strength, minimized degree of dependence on a powered actuator, and complete wearer safety. Based on these concepts, a spring and link bar mechanism was conceived as a novel idea. The movement of the thigh is transferred to the spring mechanism through the link bar; hence, the elastic force of the spring assists the thigh muscle. Using forse sensing resistor (FSR) sensors and a powered cam mechanism, the muscle assistance is automatically activated and deactivated according to the wearer's movement. The specific mechanisms of the robot are addressed in detail, and the effectiveness is verified by experiments.