• Title/Summary/Keyword: Robot Platform

Search Result 414, Processing Time 0.025 seconds

Vision-based Localization for AUVs using Weighted Template Matching in a Structured Environment (구조화된 환경에서의 가중치 템플릿 매칭을 이용한 자율 수중 로봇의 비전 기반 위치 인식)

  • Kim, Donghoon;Lee, Donghwa;Myung, Hyun;Choi, Hyun-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.8
    • /
    • pp.667-675
    • /
    • 2013
  • This paper presents vision-based techniques for underwater landmark detection, map-based localization, and SLAM (Simultaneous Localization and Mapping) in structured underwater environments. A variety of underwater tasks require an underwater robot to be able to successfully perform autonomous navigation, but the available sensors for accurate localization are limited. A vision sensor among the available sensors is very useful for performing short range tasks, in spite of harsh underwater conditions including low visibility, noise, and large areas of featureless topography. To overcome these problems and to a utilize vision sensor for underwater localization, we propose a novel vision-based object detection technique to be applied to MCL (Monte Carlo Localization) and EKF (Extended Kalman Filter)-based SLAM algorithms. In the image processing step, a weighted correlation coefficient-based template matching and color-based image segmentation method are proposed to improve the conventional approach. In the localization step, in order to apply the landmark detection results to MCL and EKF-SLAM, dead-reckoning information and landmark detection results are used for prediction and update phases, respectively. The performance of the proposed technique is evaluated by experiments with an underwater robot platform in an indoor water tank and the results are discussed.

Cloudboard: A Cloud-Based Knowledge Sharing and Control System (클라우드보드: 클라우드 기반 지식 공유 및 제어 시스템)

  • Lee, Jaeho;Choi, Byung-Gi;Bae, Jae-Hyeong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.3
    • /
    • pp.135-142
    • /
    • 2015
  • As the importance of software to society has grown, more and more schools worldwide teach coding basics in the classroom. Despite the rapid spread of coding instruction in grade schools, experience in the classroom is certainly limited because there is a gap between the curriculum and the existing computing environment such as the mobile and cloud computing. We propose an approach to fill this gap by using a mobile environment and the robot on the cloud-based platform for effective teaching. In this paper, we propose an architecture called Cloudboard that enables knowledge sharing and collaboration among knowledge providers in the cloud-based robot platforms. We also describe five representative architectural patterns that are referenced and analyzed to design the Cloudboard architecture. Our early experimental results show that the Cloudboard can be effective in the development of collective robotic systems.

Da Vinci Robot-Assisted Pulmonary Lobectomy in Early Stage Lung Cancer - 3 cases report - (조기 폐암에서 다빈치 로봇을 이용한 폐엽절제술 - 3예 보고 -)

  • Haam, Seok-Jin;Lee, Kyo-Joon;Cho, Sang-Ho;Kim, Hyung-Joong;Jeon, Se-Eun;Lee, Doo-Yun
    • Journal of Chest Surgery
    • /
    • v.41 no.5
    • /
    • pp.659-662
    • /
    • 2008
  • Video-assisted pulmonary lobectomy was introduced in the early 1990's by several authors, and the frequency of video-assisted thoracic surgery (VATS) lobectomy for lung cancer has been slowly increasing because of its safety and oncologic acceptability in patients with early stage lung cancer However, VATS is limited by 2D imaging, an unsteady camera platform, and limited maneuverability of its instruments. The da Vinci Surgical System was recently introduced to overcome these limitations. It has a 3D endoscopic system with high resolution and magnified binocular views and EndoWrist instruments. We report three cases of da Vinci robot system-assisted pulmonary lobectomy in patients with early stage lung cancer.

A Context-aware Workflow System for URC Services (URC 서비스를 위한 상황인지 기반의 워크플로우 시스템)

  • Choi, Jong-Sun;Kwak, Dong-Gyu;Choi, Jae-Young;Cho, Yong-Yun
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.9
    • /
    • pp.676-686
    • /
    • 2010
  • An URC (Ubiquitous Robot Companion) is aimed for providing the best service according to situational information that it recognizes. In order to offer human-friendly and intelligent services, a robot middleware requires the technique to automate and control URC service processes, which are based on context-awareness. In this paper, we propose a context-aware workflow system to provide web services based URC services according to situational information. The proposed system offers a platform-independent command object model to control heterogeneous URCs, and supports web services based context-aware URC services. Therefore, the proposed system can increase the reliability of URC services in ubiquitous network environment, on which the diverse URC robots and platforms exist. And it can enhance the flexibility and adaptability of the functional and structural changes of URC systems.

Design and Development of 600 W Proton Exchange Membrane Fuel Cell (600 W급 연료전지(PEMFC)의 설계 및 제작)

  • Kim, Joo-Gon;Chung, Hyun-Youl;Bates, Alex;Thomas, Sobi;Son, Byung-Rak;Park, Sam;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.17-22
    • /
    • 2014
  • The design of a fuel cells stack is important to get optimal output power. This study focuses on the evaluation of fuel cell system for unmaned aerial vehicles (UAVs). Low temperature proton exchange membrane (LTPEM) fuel cells are the most promising energy source for the robot applications because of their unique advantages such as high energy density, cold startup, and quick response during operation. In this paper, a 600 W open cathode LTPEM fuel cell was tested to evaluate the performance and to determine optimal operating conditions. The open cathode design reduces the overall size of the system to meet the requirement for robotic application. The cruise power requirement of 600 W was supported entirely by the fuel cell while the additional power requirements during takeoff was extended using a battery. A peak of power of 900 W is possible for 10 mins with a lithium polymer (LiPo) battery. The system was evaluated under various load cycles as well as start-stop cycles. The system response from no load to full load meets the robot platform requirement. The total weigh of the stack was 2 kg, while the overall system, including the fuel processing system and battery, was 4 kg.

Development of a Compiler Teaching Model Using the Compiler Developing Environment Edu-IDEC (컴파일러 개발환경 Edu-IDEC를 이용한 컴파일러 수업모형 개발)

  • Kwon, Jung-Hoon;Park, Eun-Kyoung;Sung, Woo-Kyung;Kim, Hyun-Ju;Bae, Jong-Min
    • The Journal of Korean Association of Computer Education
    • /
    • v.16 no.6
    • /
    • pp.33-43
    • /
    • 2013
  • Compiler and language implementation courses have long been recognized as an important subject in Computer Science curricula. It is because not only the knowledge for a compiler plays important roles in understanding programming languages and systems but compiler technologies can be used in many applications. However it requires much effort to teach effectively it due to limited resources and time restriction. We present a compiler teaching model using Edu-IDEC which is a development environment of educational compilers. Edu-IDEC is a tool on the robot platform. It uses the Eclipse plug-ins and has functions like compiler developing tools, a reference compiler, visualization tool of syntax tree, visualization tool of object language, NXT robot controllers, and its simulator. We also present the evaluation results for our model by applying it to an actual class.

  • PDF

How to Derive the Autonomous Driving Function Level of Unmanned Ground Vehicles - Focusing on Defense Robots - (무인지상차량의 자율주행 기능수준 도출 방법 - 국방로봇을 중심으로 -)

  • Kim, Yull-Hui;Choi, Yong-Hoon;Kim, Jin-Oh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.205-213
    • /
    • 2017
  • This paper is a study on the method to derive the functional level required for autonomous unmanned ground vehicle, one of the defense robots. Conventional weapon systems are not significantly affected by the operating environment, while defense robots exhibit different performance depending on the operating environment, even if they are on the same platform. If the performance of defense robot is different depending on operational environment, results of mission performance will be vary significantly. Therefore, it is necessary to clarify the level of function required by the military in order to research and develop most optimal defense robots. In this thesis, we propose a method to derive the required function level of unmanned ground vehicles, focusing on autonomous driving, one of the most vital functions of defense robots. Our results showed that the autonomous driving function depending intervention levels and evaluated functional sensitivity for autonomous driving of the unmanned vehicle using climate and topography as variables.

A New Wheel Design for Miniaturized Terrain Adaptive Robot (험지 주행용 소형 로봇을 위한 바퀴의 설계)

  • Kim, Yoo Seok;Kim, Haan;Jung, Gwang Pil;Kim, Seong Han;Cho, Kyu Jin;Chu, Chong Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.32-38
    • /
    • 2013
  • Small mobile robots which use round wheels are suitable for driving on a flat surface, but it cannot climb the obstacle whose height is greater than the radius of wheels. As an alternative, legged-wheels have been proposed by many researchers due to its better climbing performance. However, driving and climbing performances have a trade-off relationship so that their driving performance should be sacrificed. In this study, in order to achieve both driving and climbing performances, a new transformable wheel was developed. The developed transformable wheel can have a round shape on a flat surface and change its shape into legged-wheel when it makes a contact with an obstacle. For design of the transformable wheel, the performance of legged-wheel was analyzed with respect to the number and curvature of the leg, and then the new transformable wheel was designed based on the analysis. Contrary to the existing transformable wheels that contain additional actuators for the transformation, the developed transformable wheel can be unfolded without any additional actuator. In this study, in order to validate the transformable wheel, a simple robot platform was fabricated. Consequently, it climbed the obstacle whose height is 2.6 times greater than the wheel radius.

Effects of maker education for high-school students on attitude toward software education, creative problem solving, computational thinking (고등학생 대상 메이커 교육이 소프트웨어 교육에 대한 태도, 창의적 문제해결력, 컴퓨팅 사고에 미치는 영향)

  • Hong, Wonjoon;Choi, Jae-Sung;Lee, Hyun
    • Journal of The Korean Association of Information Education
    • /
    • v.24 no.6
    • /
    • pp.585-596
    • /
    • 2020
  • The purpose of this study is to examine effects of maker education for high-school students on attitude toward software education, creative problem solving, and computational thinking. The program was designed to develop an artificial intelligence robot using mBlock and Arduino and implemented at a maker space. We analyzed 19 students among 20 who participated in the program, the result of paired t-test indicated significant increase in all variables. Also, we performed a multiple regression analysis to investigate predictors of perceived achievement and satisfaction. The finding demonstrated an initial attitude toward software education was found to be the significant predictor of perceived achievement and satisfaction. With the results, we confirmed maker education enhances attitude toward software education, creative problem solving, and computational thinking. Lastly, we discussed the implications and limitations and suggested the direction for future research.

How Does the Media Deal with Artificial Intelligence?: Analyzing Articles in Korea and the US through Big Data Analysis (언론은 인공지능(AI)을 어떻게 다루는가?: 뉴스 빅데이터를 통한 한국과 미국의 보도 경향 분석)

  • Park, Jong Hwa;Kim, Min Sung;Kim, Jung Hwan
    • The Journal of Information Systems
    • /
    • v.31 no.1
    • /
    • pp.175-195
    • /
    • 2022
  • Purpose The purpose of this study is to examine news articles and analyze trends and key agendas related to artificial intelligence(AI). In particular, this study tried to compare the reporting behaviors of Korea and the United States, which is considered to be a leader in the field of AI. Design/methodology/approach This study analyzed news articles using a big data method. Specifically, main agendas of the two countries were derived and compared through the keyword frequency analysis, topic modeling, and language network analysis. Findings As a result of the keyword analysis, the introduction of AI and related services were reported importantly in Korea. In the US, the war of hegemony led by giant IT companies were widely covered in the media. The main topics in Korean media were 'Strategy in the 4th Industrial Revolution Era', 'Building a Digital Platform', 'Cultivating Future human resources', 'Building AI applications', 'Introduction of Chatbot Services', 'Launching AI Speaker', and 'Alphago Match'. The main topics of US media coverage were 'The Bright and Dark Sides of Future Technology', 'The War of Technology Hegemony', 'The Future of Mobility', 'AI and Daily Life', 'Social Media and Fake News', and 'The Emergence of Robots and the Future of Jobs'. The keywords with high centrality in Korea were 'release', 'service', 'base', 'robot', 'era', and 'Baduk or Go'. In the US, they were 'Google', 'Amazon', 'Facebook', 'China', 'Car', and 'Robot'.