• Title/Summary/Keyword: Robot Operation System

Search Result 404, Processing Time 0.025 seconds

Vision-based Sensor Fusion of a Remotely Operated Vehicle for Underwater Structure Diagnostication (수중 구조물 진단용 원격 조종 로봇의 자세 제어를 위한 비전 기반 센서 융합)

  • Lee, Jae-Min;Kim, Gon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.4
    • /
    • pp.349-355
    • /
    • 2015
  • Underwater robots generally show better performances for tasks than humans under certain underwater constraints such as. high pressure, limited light, etc. To properly diagnose in an underwater environment using remotely operated underwater vehicles, it is important to keep autonomously its own position and orientation in order to avoid additional control efforts. In this paper, we propose an efficient method to assist in the operation for the various disturbances of a remotely operated vehicle for the diagnosis of underwater structures. The conventional AHRS-based bearing estimation system did not work well due to incorrect measurements caused by the hard-iron effect when the robot is approaching a ferromagnetic structure. To overcome this drawback, we propose a sensor fusion algorithm with the camera and AHRS for estimating the pose of the ROV. However, the image information in the underwater environment is often unreliable and blurred by turbidity or suspended solids. Thus, we suggest an efficient method for fusing the vision sensor and the AHRS with a criterion which is the amount of blur in the image. To evaluate the amount of blur, we adopt two methods: one is the quantification of high frequency components using the power spectrum density analysis of 2D discrete Fourier transformed image, and the other is identifying the blur parameter based on cepstrum analysis. We evaluate the performance of the robustness of the visual odometry and blur estimation methods according to the change of light and distance. We verify that the blur estimation method based on cepstrum analysis shows a better performance through the experiments.

Intelligent Controller for Optimal Coagulant Dosage Rate in Water Treatment Process (정수장 약품 최적 주입률 결정을 위한 지능형 제어기 개발)

  • Lee, Ho-Hyun;Shin, Gang-Wook;Hong, Sung-Taek;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.369-376
    • /
    • 2015
  • Chemicals are injected in order to remove a variety of organic substances contained in the water purification plant influent. It can be determined with measuring sedimentation turbidity 4~7 hours later, whether the chemical dosage rate is proper or not, which make the real-time feedback control impossible. In addition, manual operation in accordance with the Jar-Test carried out in the laboratory and the operator's experience may cause the experimental and human error by the changes of organic characteristics and water quality. Especially at night ad weekend, the rate have been determined only by the operator judgment owing to environment engineer's absence. Therefore, the decision of optimal chemical dosage rate using proposed intelligent control algorithm is expected to result in real-time injection and cost reduction.

A Kalman filter with sensor fusion for indoor position estimation (실내 측위 추정을 위한 센서 융합과 결합된 칼만 필터)

  • Janghoon Yang
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.441-449
    • /
    • 2021
  • With advances in autonomous vehicles, there is a growing demand for more accurate position estimation. Especially, this is a case for a moving robot for the indoor operation which necessitates the higher accuracy in position estimation when the robot is required to execute the task at a predestined location. Thus, a method for improving the position estimation which is applicable to both the fixed and the moving object is proposed. The proposed method exploits the initial position estimation from Bluetooth beacon signals as observation signals. Then, it estimates the gravitational acceleration applied to each axis in an inertial frame coordinate through computing roll and pitch angles and combining them with magnetometer measurements to compute yaw angle. Finally, it refines the control inputs for an object with motion dynamics by computing acceleration on each axis, which is used for improving the performance of Kalman filter. The experimental assessment of the proposed algorithm shows that it improves the position estimation accuracy in comparison to a conventional Kalman filter in terms of average error distance at both the fixed and moving states.

High-speed Integer Operations in the Fuzzy Consequent Part and the Defuzzification Stage for Intelligent Systems (지능 시스템을 위한 퍼지 후건부 및 비퍼지화 단계의 고속 정수연산)

  • Lee Sang-Gu;Chae Sang-Won
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.2 s.308
    • /
    • pp.52-62
    • /
    • 2006
  • In a fuzzy control system to process fuzzy data in high-speed for intelligent systems, one of the important problems is the improvement of the execution speed in the fuzzy inference and defuzzification stages. Especially, it is more important to have high-speed operations in the consequent part and defuzzification stage. Therefore, in this paper, to improve the speedup of the fuzzy controllers for intelligent systems, we propose an integer line mapping algorithm using only integer addition to convert [0,1] real values in the fuzzy membership functions in the consequent part to integer grid pixels $(400{\times}30)$. This paper also shows a novel defuzzification algorithm without multiplications. Also we apply the proposed system to the truck backer-upper control system. As a result, this system shows a real-time very high speed fuzzy control as compared as the conventional methods. This system will be applied to the real-time high-speed intelligent systems such as robot arm control.

An Overheight Warning System for High Height Vehicles (전고가 높은 차량을 위한 통과 높이 경고 시스템)

  • Kim, Tae-Won;Ok, Seung-Ho;Heo, Gyeongyong;Lee, Imgeun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.849-856
    • /
    • 2020
  • Recently, as the number of high-height vehicles such as double-decker buses has increased, collision accidents have occurred in bridges and tunnels due to the deviation from the designated routes and driver's carelessness. In the case of the existing front collision warning system, it is limited to vehicles and pedestrians, so it is difficult to use it as a pass height warning system for the high height vehicles. In this paper, we propose a system that generates a warning by determining the correlation and time series characteristics of data for each segment using multiple lidar sensors and then determining the possibility of collision in the upper part of the vehicle. Also, the proposed system confirmed the proper operation through a real-time driving test and a system performance evaluation by the Korea Automobile Testing & Research Institute.

A Study on Integrated Fire Protection System for high-rise Building (초고층빌딩 통합 화재방재시스템 설계 및 구현에 관한 연구)

  • Lee, Jeong-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.39-47
    • /
    • 2020
  • The fire protection system for high-rise buildings is currently confined to the preparation of sprinklers, emergency stairs, and exit and monitoring systems. On the other hand, an integrated system, including the model with scenario-based actions, is required for effective fire protection. An integrated fire protection system is needed to operate and manage the total cycle of the fire protection. In this study, an integrated fire protection system, which included sensing and consequent processes related to fire emergencies, was designed and implemented. The designed scheme can gather and analyze the data of the production, operation, and consumption patterns as it integrates fire protection systems for fire fighters and evacuating people. The integrated fire protection technology and system, which has target performance with satisfied 1/2 sec transaction response time and 1.2 transactions per second, is expected to contribute to market creation in converged technology-based fire protection fields.

Development of a Root-Removed Splice Grafting System for Cucurbitaceous Vegetables (1) - Analysis of Grafting Process and System Setting - (박과채소용 단근합접 접목시스템 개발(1) -작업공정 분석과 시스템 설정 -)

  • Kang, C.H.;Lee, S.K.;Han, K.S.;Lee, Y.B.;Choi, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.6
    • /
    • pp.453-461
    • /
    • 2008
  • This study was conducted to develop a root-removed splice grafting system for cucurbitaceous vegetables, mainly watermelon and cucumber seedlings, for the seedlings factories where currently most of seedlings grafting works are carried out by manual works. The major results of the study are as follows. The dimensions of rootstocks and scions, except cotyledon width, of root- removed splice grafting of watermelon and cucumber were shown to be varied within the 2.5-fold range. The growth status of seedlings were not consistent in terms of cotyledon sprouting direction and angle which were considered as one of the important factors for in root-removed splice grafting. The grafting work of root-removed splice for grafted watermelon and cucumber could be divided by four sub-operations: seedling supplying, cutting, clipping and potting, while a part or all root of the rootstock was removed in the seedlings supplying operation. The cutting angles of the rootstock and scion were $34-45^{\circ}$ and $20-45^{\circ}$, respectively, while the stem length of the scion varied from 6 mm to 12 mm. The splices of rootstock and scion were heaped up in parallel and then fixed by a clip. It indicated that the ideal grafting system, adopting conventional grafting processes of seedlings specifications as well as conventionally manual root-removed splice grafting method, performed very well for seedlings gripping and transporting, supplying clip, clipping and discharging grafted seedlings while workers supplied seedlings to the semi-automatical system.

Systems of the Remote Control via the Web (웹을 통한 원격제어 시스템)

  • Lee, Chang-Hee;Lee, Kwang-Je;Won, Yong-Jin;Ryu, Hee-Sahm
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.3
    • /
    • pp.65-70
    • /
    • 2002
  • This paper discusses the work-in-progress of a system to control a moving robot over the WWW(World Wide Web). That is, we describes the experimental results and control methods of system over the world wide web. The remote control of the system is controlled by accessing a simple form of interface that is connected to the server. For this application, a remote operator should have a general-purpose computer with Internet connection and a WWW browser to remotely operate the line-tracer through the Internet. As a remote operator summits an input by operating html files in the server, the program written in java is operated the equipment is being connected to the serial port. By being transmitted to the line-tracer through the infra-red sensor, the remote controlled signal is operated in distance. As a tool in order to identify the system's operation of the over the web is used the line-tracer. 

A Study on Autonomous Stair-climbing System Using Landing Gear for Stair-climbing Robot (계단 승강 로봇의 계단 승강 시 랜딩기어를 활용한 자율 승강 기법에 관한 연구)

  • Hwang, Hyun-Chang;Lee, Won-Young;Ha, Jong-Hee;Lee, Eung-Hyuck
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.362-370
    • /
    • 2021
  • In this paper, we propose the Autonomous Stair-climbing system based on data from ToF sensors and IMU in developing stair-climbing robots to passive wheelchair users. Autonomous stair-climbing system are controlled by separating the timing of landing gear operation by location and utilizing state machines. To prove the theory, we construct and experiment with standard model stairs. Through an experiment to get the Attack angle, the average error of operating landing gear was 2.19% and the average error of the Attack angle was 2.78%, and the step division and status transition of the autonomous stair-climbing system were verified. As a result, the performance of the proposed techniques will reduce constraints of transportation handicapped.

The Technique of Human tracking using ultrasonic sensor for Human Tracking of Cooperation robot based Mobile Platform (모바일 플랫폼 기반 협동로봇의 사용자 추종을 위한 초음파 센서 활용 기법)

  • Yum, Seung-Ho;Eom, Su-Hong;Lee, Eung-Hyuk
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.638-648
    • /
    • 2020
  • Currently, the method of user-follwoing in intelligent cooperative robots usually based in vision system and using Lidar is common and have excellent performance. But in the closed space of Corona 19, which spread worldwide in 2020, robots for cooperation with medical staff were insignificant. This is because Medical staff are all wearing protective clothing to prevent virus infection, which is not easy to apply with existing research techniques. Therefore, in order to solve these problems in this paper, the ultrasonic sensor is separated from the transmitting and receiving parts, and based on this, this paper propose that estimating the user's position and can actively follow and cooperate with people. However, the ultrasonic sensors were partially applied by improving the Median filter in order to reduce the error caused by the short circuit in communication between hard reflection and the number of light reflections, and the operation technology was improved by applying the curvature trajectory for smooth operation in a small area. Median filter reduced the error of degree and distance by 70%, vehicle running stability was verified through the training course such as 'S' and '8' in the result.