• 제목/요약/키워드: Robot Identification

검색결과 185건 처리시간 0.026초

RFID Reader용 멀티 프로토콜 모뎀 설계 (Implementation of a Multi-Protocol Baseband Modem for RFID Reader)

  • 문전일;기태훈;배규성;김종배
    • 로봇학회논문지
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 2009
  • Radio Frequency Identification (RFID) is an automatic identification method. Information such as identification, logistics history, and specification of products are written and stored into the memory of RFID tags (that is, transponders), and retrieved through RF communication between RFID reader device and RFID tags. RFID systems have been applied to many fields of transportation, industry, logistics, environment, etc in order to improve business efficiency and reduce maintenance cost as well. Recently, some research results are announced in which RFID devices are combined with other sensors for mobile robot localization. In this paper, design of multi-protocol baseband for RFID reader device is proposed, and the baseband modem is implemented into SoC (System On a Chip). The baseband modem SoC for multi-protocol RFID reader is composed of several IP (Intellectual Property) blocks such as multi-protocol blocks, CPU, UART(Universal Asynchronous Receiver and Transmitter), memory, etc. As a result, the SoC implemented with FPGA(Field Programmable Gate Array) is applied to real product. It is shown that the size of RFID Reader module designed with the FPGA becomes smaller, and the SoC chip price for the same function becomes cheap. In addition, operation performance could be the same or better than that of the product with no SoC applied.

  • PDF

오도메트리 정보와 RFID 시스템을 이용한 이동 로봇 위치 인식 방법 (New Algorithm of Localization Using Odometry and RFID System)

  • 이규민;장문수;박부견
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.91-92
    • /
    • 2008
  • Localization and its applications are very important area of the mobile robot technology. Especially, accurate localization is needed when we move the mobile robot to the goal position. In indoor cases, Global Positioning System(GPS) is not suitable but Radio Frequency Identification(RFID) technology can provide position data to the robot. A proposed algorithm in this paper uses not only odometry data but also RFID data to improve estimation of true position of the robot with the particle filtering.

  • PDF

생체모방형 수중로봇의 해양작전 운용개념 및 핵심소요기술 (Applications and Key Technologies of Biomimetic Underwater Robot for Naval Operations)

  • 이기영
    • 한국군사과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.189-200
    • /
    • 2015
  • This paper gives an overview on the some potential applications and key technologies of biomimetic underwater robot for naval operations. Unlike most manned underwater naval systems, biomimetic underwater robots can be especially useful in near-land or harbour areas due to their ability to operate in shallow water effectively. Biomimetic underwater robot provide advantages in reaching locations that would be difficult or too dangerous for a manned vehicle to reach, as well as providing a level of autonomy that can remove the requirement for dedicated human operator support. Using multiple or schools of underwater robots would provide increased flexibility for navigation, communication and surveillance ability. And it alleviate some of the restrictions associated with speed and endurance design constraints.

A Tool for the Analysis of Robot Soccer Game

  • Matko, Drago;Klancar, Gregor;Lepetic, Marko
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권2호
    • /
    • pp.222-228
    • /
    • 2003
  • A tool which can be used for the analysis of a robot soccer game is presented. The tool enables automatic filtering and selection of game sequences which are suitable for the analysis of the game. Fuzzy logic is used since the data gathered by a camera is highly noisy. The data used in the paper was recorded during the game Germany - Slovenia in Hagen, on November 11, 2001. The dynamic parameters of our robots are estimated using the least squares technique. Meandering parameters are estimated and an attempt is made to identify the strategy of the opposing team with the method of introspection.

자기동조 PID 제어기를 이용한 로보트 매니플레이터의 위치제어 (Position control of robot manipulator using self-turning PID controller)

  • 김유택;이재호;양태규;이상효
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.41-44
    • /
    • 1988
  • This paper represents the study of an effective self-tuning PID control for a robot manipulator to track a reference trajectory in spite of the presence of nonlinearities and parameters uncertainties in robot dynamic models. In this control scheme, an error model of the manipulator is established, for the first time, by difference between joint reference trajectory and tracked trajectory. It's model Parameters are estimated by the recursive least-square identification algorithm, and classical controller parameters are determined by pole placement method. A computer simulation study was conducted to demonstrate performance of the proposed self-tuning PID control in joint-based coordinates for a robot with payload.

  • PDF

Developement and control of a sensor based quadruped walking robot

  • Bien, Zeungnam;Lee, Yun-Jung;Suh, Il-Hong;Lee, Ji-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1087-1092
    • /
    • 1990
  • This paper describes the development and control of a quadruped walking robot, named as KAISER-II. The control system with multiprocessor based hierachical structure is developed. In order to navigate autonomously on a rough terrain, an identification algorithm for robot's position is proposed using 3-D vision and guide-mark pattern Also, a simple attitude control algorithm is included using force sensors. Through experimental results, it is shown that the robot can not only walk statically on even terrain but also cross over or go through the artificially made obstacles such as stairs, horizontal bar and tunnel-typed one.

  • PDF

걸음걸이 인식을 통한 감시용 로봇에서의 개인 확인 (Gait Recognition and Person Identification for Surveillance Robots)

  • 박진일;이욱재;조재훈;송창규;전명근
    • 제어로봇시스템학회논문지
    • /
    • 제15권5호
    • /
    • pp.511-518
    • /
    • 2009
  • The surveillance robot has been an important component in the field of service robot industry. In the surveillance robot technology, one of the most important technology is to identify a person. In this paper, we propose a gait recognition method based on contourlet and fuzzy LDA (Linear Discriminant Analysis) for surveillance robots. After decomposing a gait image into directional subband images by contourlet, features are obtained in each subband by the fuzzy LDA. The final gait recognition is performed by a fusion technique that effectively combines similarities calculated respectively in each local subband. To show the effectiveness of the proposed algorithm, various experiments are performed for CBNU and NLPR DB datasets. From these, we obtained better classification rates in comparison with the result produced by previous methods.

작업좌표에서 로보트 매니퓰레어터에 대한 극점배치 자기동조 제어 (Pole-Placement Self-Tuning Control for Robot Manipulators in Task Coordinates)

  • 양태규;이상효
    • 대한전기학회논문지
    • /
    • 제38권3호
    • /
    • pp.247-255
    • /
    • 1989
  • 본 논문에서는 작업좌표에서 로보트 매니퓰레이터에 대해 적분 동작을 갖는 오차 모델과 극점배치 자기동조제어기를 제안하였다. 이 제어기는 로보트 동력학의 자세한 표현없이 부하 외란에 의한 자류편차를 제거할 수 있다. 오차 모델 배개변수는 반복 최소 자승 알고리즘에 의해 추정되고, 제어기 매개 변수는 극점 배치 방법에 의해 결정된다. 작업좌표에서 제안된 제어 계통의 성능을 평가하기 위하여 부하를 갖는 3개 관절 2개 링크의 공간 로보트 매니퓰레이터에 의해 컴퓨터 시뮬레이션을 하였다.

Command Fusion for Navigation of Mobile Robots in Dynamic Environments with Objects

  • Jin, Taeseok
    • Journal of information and communication convergence engineering
    • /
    • 제11권1호
    • /
    • pp.24-29
    • /
    • 2013
  • In this paper, we propose a fuzzy inference model for a navigation algorithm for a mobile robot that intelligently searches goal location in unknown dynamic environments. Our model uses sensor fusion based on situational commands using an ultrasonic sensor. Instead of using the "physical sensor fusion" method, which generates the trajectory of a robot based upon the environment model and sensory data, a "command fusion" method is used to govern the robot motions. The navigation strategy is based on a combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance based on a hierarchical behavior-based control architecture. To identify the environments, a command fusion technique is introduced where the sensory data of the ultrasonic sensors and a vision sensor are fused into the identification process. The result of experiment has shown that highlights interesting aspects of the goal seeking, obstacle avoiding, decision making process that arise from navigation interaction.

관절형 로보트에 있어서의 미지부하에 대한 링크의 균형화와 부하질량의 추정 (Link balancing and identification for an unknown payload in an articulated robot)

  • 임태균;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.534-539
    • /
    • 1988
  • This paper presents a method to balance the links of an articulated robot for an unknown payload using an automatic balancing mechanism. The balancing masses are controlled to move in their appropriate locations so that the joint torques of the links are eliminated. After balancing the mass of the payload is obtained from the balancing conditions. Based upon a series of simulation studies some results are discussed.

  • PDF