• 제목/요약/키워드: Robot Car

검색결과 119건 처리시간 0.022초

연단속 용접 주행로봇의 개발 (Development of Continuous/Intermittent Welding Mobile Robot)

  • 강치정;전양배;감병오;신승화;김상봉
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 추계학술발표대회 개요집
    • /
    • pp.31-33
    • /
    • 2000
  • Welding processing is used in the various industrial fields such as shipbuilding, car, airplane and steel structure, etc.. But the welding process has a bad working condition and lack of skillful worker. The welding depended on man power causes low productivity and difficulty in keeping continuous and stable quality control. This paper shows the development results of welding mobile robot with the several functions such as continuous/intermittent welding, initial welding speed control, acceleration control, crater and deceleration speed control in welding end. The robot is developed based on microprocess which is intel 80c196kc.

  • PDF

여유자유도 실링 로봇에서의 최적 경로 계획 (Optimal Path Planning in Redundant Sealing Robots)

  • 성영휘;주백석
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1911-1919
    • /
    • 2012
  • In this paper, we focus on a robotic sealing process in which three robots are used. Each robot can be considered as a 7 axis redundant robot of which the first joint is prismatic and the last 6 joints are revolute. In the factory floor, robot path planning is not a simple problem and is not automated. They need experienced operators who can operate robots by teaching and playing back fashion. However, the robotic sealing process is well organized so the relative positions and orientations of the objects in the floor and robot paths are all pre-determined. Therefore by adopting robotic theory, we can optimally plan robot pathes without using teaching. In this paper, we analyze the sealing robot by using redundant manipulator theory and propose three different methods for path planning. For sealing paths outside of a car body, we propose two methods. The first one is resolving redundancy by using pseudo-inverse of Jacobian and the second one is by using weighted pseudo-inverse of Jacobian. The former is optimal in the sense of energy and the latter is optimal in the sense of manipulability. For sealing paths inside of a car body, we must consider collision avoidance so we propose a performance index for that purpose and a method for optimizing that performance index. We show by simulation that the proposed method can avoid collision with faithfully following the given end effector path.

도킹 포메이션을 이용한 차량형 이동 로봇의 자율 주차 (Autonomous Parking of Car-Like Mobile Robot Using Docking Formation)

  • 권지욱;김진효;서지원
    • 전자공학회논문지
    • /
    • 제51권10호
    • /
    • pp.180-189
    • /
    • 2014
  • 본 논문은 무인 자동차의 자율주차 알고리즘 개발을 위하여 이 문제를 차량형 이동로봇의 위치-자세 안정화 (posture regulation) 문제로 치환하고 이렇게 치환된 문제를 해결할 수 있는 차량형 이동로봇을 위한 도킹 포메이션과 궤환선형화 제어기법을 제안한다. 경로생성 기법과 최적화 기법을 기반으로 하는 기존의 연구결과들에 비해, 본 논문에서 제안하는 자율주차 알고리즘은 자율주차 문제를 도킹 포메이션 기반의 위치-자세 안정화 문제로 치환하고 입력제한을 고려할 수 있는 궤환선형화 제어기법을 적용함으로써 적은 연산량과 낮은 성능의 프로세서만으로도 무인 자동차의 자율 주차가 가능하도록 한다. 본 논문에서 제안된 차량형 이동로봇의 도킹 포메이션과 궤환선형화 제어기법의 유효성은 안정성 해석을 통하여 보이고, 본 논문에서 제안하는 자율주차 알고리즘의 성능은 모의실험 및 실제 로봇을 통한 실험결과를 통하여 검증한다.

원전 이동감시 및 방사선 측정용 원격조종 로봇 개발 (Development of a remote controlled mobile robot system for monitoring nuclear power plant)

  • 구관모;이범희;우희곤
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.511-515
    • /
    • 1996
  • A remote controlled mobile robot system has been developed and tested to monitor the radiation area in the nuclear power plant. The mobile robot system operates according to car-driving-like commands and is capable of radiation measurement and visual inspection in unmanned situations under radiation. The robot system is equipped with a radiation sensor and two cameras with appropriate illumination set-ups. The camera with auto-focus function and 8-times zoom lens is mounted on the pan/tilt rotational base and the other is mounted on the front panel of the robot system. All commands regarding the motion of the mobile robot and various sensors are given through the monitoring system which is designed to provide an integrated man-machine interface.

  • PDF

두 팔을 가지는 변형 가능한 구형로봇 (A Deformable Spherical Robot with Two Arms)

  • 안성수;김영민;이연정
    • 제어로봇시스템학회논문지
    • /
    • 제16권11호
    • /
    • pp.1060-1067
    • /
    • 2010
  • In this paper, we present a new type of spherical robot having two arms. This robot, called KisBot, mechanically consists of three parts, a wheel-shaped body and two rotating semi-spheres. In side of each semi-sphere, there exists an arm which is designed based on slider-crank mechanism for space efficiency. KisBot has hybrid types of driving mode: rolling and wheeling. In the rolling mode, the robot folds its arms through inside of itself and uses them as pendulum, then the robot works like a pendulum-driven robot. In the wheeling mode, two arms are extended from inside of the robot and are contacted to the ground, then the robot works like a one-wheel car. The Robot arms can be used as a brake during rolling mode and add friction to the robot for climbing a slope during wheeling mode. We developed a remote controlled type robot for experiment. It contains two DC motors which are located in the center of each semi-sphere for main propulsion, two RC motors for each arm operation, speed controllers for each semi-sphere, batteries for main power source, and other mechanical components. Experiments for the rolling and wheeling mode verify the hybrid driving ability and efficiency of the our proposed spherical robot.

이동로보트의 점근적으로 안정한 추종제어 (Asymptotically stable tracking control of mobile robots)

  • 김도현;오준호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.187-190
    • /
    • 1997
  • In the past few years, many researchers are interesting of control of mobile robot with nonholonomic constraints. And tracking problems is important as well as regulation in nonholonomic system control. Some researchers have investigated the stable tracking control law for mobile robot. But, few results showed the globally asymptotically stable control method simply. So, we address the design of globally asymptotically stable tracking control law for mobile robot with nonholonomic velocity constraints using simple method. The stabilizability of the controller is derived by Lyapunov direct method. And we analyze the system responses according to the variation of control parameters in line tracking problem. It is derived that the responses represent no overshoot property in line tracking. Examples are two-wheeled mobile robot and car-like mobile robot and the simulation results represent the effectiveness of our method.

  • PDF

로봇을 이용한 교량검사 시스템 개발에 관한 연구 (Bridge Inspection System using Robot)

  • 이안용;오제근;최영진
    • 로봇학회논문지
    • /
    • 제5권1호
    • /
    • pp.77-84
    • /
    • 2010
  • This paper proposes a bridge inspection system using a robot to manage the safety status of bridges. A conventional bridge inspection has a lot of problems because inspection is conducted manually by human. As an alternative, we are to develop a robot system having machine vision and this robot system is mounted on an end linkage of specially designed car having seven DOF (Degrees Of Freedom) to inspect cracks beneath bridge. This system is able to check a status of the bridge and record its changes every other year. As a result, the developed robot system offers us the inspection result of quality and reliability about the bridge inspection status. Also, we have tested the effectiveness of the suggested system through outdoor experiments.

선저 청소용 수중로봇의 청소 모듈 및 제어 시스템 개발 (Development of Cleaning Module and Operating System of Underwater Robot for Ship Hull Cleaning)

  • 최형식;권경엽;정구락;서주노;강형석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권4호
    • /
    • pp.553-561
    • /
    • 2009
  • This paper presents development of ROV-type underwater robot capable of cleaning ship hull in automatic mode. The purpose of developing this robot is for underwater cleaning to secure the safety of divers who inspect and clean the ship hull. The robot consists of the cleaning system with rotating brush mechanism, a car-like driving mechanism, inspection system using video, and overall control system for underwater communication and operation. In this paper, we present overall design process of the cleaning system and operating system and technical contents of the overall control system for the underwater cleaning robot.

유해가스 탐지·포집 로봇 (Hazardous Gas Detecting and Capturing Robot)

  • 신주성;표주현;이명석;박상현;박서연;서진호;김무림
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권2호
    • /
    • pp.27-35
    • /
    • 2022
  • This study presents one man-portable, hazardous gas detecting and capturing robot. The robot can be fit in the trunk of a sedan car. Its weight is less than 20 kg. A dedicated gas intake mechanism is proposed for the robot. The robot can detect and capture gases at a height of 2 m above the ground, although the height of the robot is about 0.2 m. The performance of the gas intake mechanism is verified through computational fluid dynamics (CFD) analysis and experiments. Its gas detecting signals were acquired by serial communication and processed in Robot Operating System (ROS) based control software. The proposed robot can successfully move on rough terrains such as stairs, sand roads, and rock roads.

네 바퀴 이동로봇의 주차 동작에 관한 연구 (A Study on Parking Motions of a Four-wheeled Mobile Robot)

  • 강수민;성영휘
    • 한국산업융합학회 논문집
    • /
    • 제27권4_2호
    • /
    • pp.825-832
    • /
    • 2024
  • Traditional cars have a structure that steers the front wheels to change their direction so they have difficulties in performing parking motion, especially in a narrow space. As electric vehicles developed, robotics technology especially omni-directional mobile robot technology began to be incorporated into the automobile field. Omni-directional mobility and special turning movements are particularly useful for parking cars. In this paper, we propose a four-wheeled mobile robot. The proposed robot has a structure that can combine or separate robot body and robot wheel parts by using electric brakes. The proposed robot has omni-directional mobility and has the ability to rotate around an arbitrary point. Due to these omnidirectional and rotational characteristics, the proposed robot allows for various types of movements when applied to a car. In particular, parking is performed in a simple and intuitive manner that does not require complicated path planning. We implemented the proposed four-wheeled robot and showed its effectiveness by conducting several parking experiments.