• 제목/요약/키워드: Robot Actuator

검색결과 358건 처리시간 0.026초

공압식 러버 액츄에이터를 사용한 경량 로봇 팔의 제작에 관한 연구 (A study on the development of the light weight robot arm using pneumatic rubber actuator)

  • 김연호;정명진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.523-527
    • /
    • 1991
  • A rubber pneumatic controlled actuator is a new actuator. It is very light With a high power-to-weight ratio. In this thesis, a control method for a two link robot arm using the rubber actuator is developed. The structure of the servo control is made up of two sections. The position control is performed by PID feedback control. The air pressure is controlled by Servo Valve Unit driven by PWM and the control input is compensated by software operation. The numerical simulation of this control method to two link robot arm is presented to verify the performance of the closed loop system. The actual control of the real two link robot arm with rubber actuator is taken and its results are discussed.

  • PDF

$\mu$-합성법에 의한 유연한 조작기의 위치 및 진동제어 (Position and Vibration Control of a Flexible Manipulator Using $\mu$-Synthesis)

  • 박노철;양현석;박영필
    • 대한기계학회논문집A
    • /
    • 제20권10호
    • /
    • pp.3186-3198
    • /
    • 1996
  • When a robot is to have contact with its enviornment, such as a medi-care robot, it would be advantageous for the robot to have a high compliance. For this reason, a robot having not only a flexible link but also an actuator with compliance, is desirable. This paper is concerned with the position and vibration control of 1 degree of freedom flexible robot using a pneumatic artificial muscle actuator. The dynamics of the manipulator assumed to be and Euler-Bernoulli beam are derived on the basis of the linear mathematical modle. Although this pneumatic artifical muscle actuator has many merits for the compliance robot, it is difficult to make an effective control scheme of this system because of ths nonlinearity and uncertainty on the dynamics of the actuator. By designing a controller using .mu.-synthesis, robust performance against measurement noise, various modeling uncertainties on the dynamics of the servo valve, actuator and mainpulator, is achieved. The effectiveness of the proposed control method is illustrated through simulations and experiments.

인체형 이족보행로봇의 개발 (Development of a Human-Sized Biped Walking Robot)

  • 최형식;박용헌;김영식
    • 제어로봇시스템학회논문지
    • /
    • 제8권6호
    • /
    • pp.484-491
    • /
    • 2002
  • We developed a new type of human-sized BWR (biped walking robot) driven by a new actuator based on the ball screw which has high strength and high gear ratio. Each leg of the robot is composed of three pitch joints and one roll joint. In all, a 10 degree-of-freedom robot with two balancing joints was developed. A new type of actuator for the robot is proposed, which is composed of four bar link mechanism driven by the ball screw. The robot overcomes the limit of the driving torque of conventional BWRs. The BWR was designed to walk autonomously by adapting small DC motors for the robot actuators and has a space to board DC battery and controllers. In the performance test, the BWR performed sitting-up and down motion, and walking motion. Through the test, we found the possibility of a high performance biped-walking.

구간분할 바이너리 제어기반 SMA 구동에 의한 로봇핸드의 운동 메커니즘에 관한 연구 (A Study on Driving Mechanism of Robot Hand Driven by SMA based on Segmented Binary Control)

  • 정상화;박준호;차경래;류신호;김광호
    • 한국공작기계학회논문집
    • /
    • 제15권5호
    • /
    • pp.14-20
    • /
    • 2006
  • In recent year, as the robot technology is developed, the researches on the artificial muscle actuator that enables robot to move dexterously like biological organ become active. Actuators are key technologies underpinning robotics. Breakthroughs in actuator technology, particular in terms of power-to-weight ratio, or energy-density, will have significant impacts upon the design and control of robotic system. In this paper, a new approach to design and control of shape memory alloy(SMA) actuator is presented to drive the robot hand. SMA wire is divided into many segments and their thermal states of the SMA are controlled individually in a binary manner. This control manner will reduce the hysteresis that the SMA material has and it becomes the fundamental technology to develop the anthropomorphic robot hand. In this paper, the mechanism In the digital step motor of the shape memory alloy that is driven by the segmented binary control, which is a new control technique, is studied. This SMA digital step actuator applies for the robot hand and the driving mechanism of the robot hand is investigated.

공기압 액츄에이터의 시간지연을 고려한 최적 서보제어 (Optimal servo control of pneumatic actuator with time-delay)

  • 진상호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1455-1458
    • /
    • 1996
  • In this paper trajectory tracking control problems are described for a robot manipulator by using pneumatic actuator. Under the assumption that the so-called independent joint control is applied to the control system, the dynamic model for each link is identified as a linear second-order system with input time-delay by the step response. Then, an optimal servo controller is designed by taking account of such a time-delay. The effectiveness of the proposed control method is illustrated through some simulations and experiments for the robot manipulator.

  • PDF

인간과의 안전한 상호 작용을 고려한 휴머노이드 조인트 모듈 개발 (Development of Humanoid Joint Module for Safe Human-Robot Interaction)

  • 오연택
    • 로봇학회논문지
    • /
    • 제9권4호
    • /
    • pp.264-271
    • /
    • 2014
  • In this study, we have developed the humanoid joint modules which provide a variety of service while living with people in the future home life. The most important requirement is ensuring the safety for humans of the robot system for collaboration with people and providing physical service in dynamic changing environment. Therefore we should construct the mechanism and control system that each joint of the robot should response sensitively and rapidly to fulfill that. In this study, we have analyzed the characteristic of the joint which based on the target constituting the humanoid motion, developed the optimal actuator system which can be controlled based on each joint characteristic, and developed the control system which can control an multi-joint system at a high speed. In particular, in the design of the joint, we have defined back-drivability at the safety perspective and developed an actuator unit to maximize. Therefore we establish a foundation element technology for future commercialization of intelligent service robots.

폐체인 구조 로봇 머니퓰레이터의 슬라이딩모드 제어 (A Sliding Mode Control for a Robot Manipulator with closed-chain Structure)

  • 최형식;백창열;황이철;김무경
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.98-108
    • /
    • 2005
  • Conventional robot manipulators actuated by motors with the speed reducer such as the harmonic drive have weakness in the load capacity, since the speed reducer does not have enough strength. To improve this, a new type of robot actuator based on the four-bar-link mechanism driven by the ball screw was constructed. Also, a new type of revolute robot manipulator composed of the developed actuators was developed. But, modelling errors occur due to the off-set from the nominal model since the exact modeling of the complex inertia variation of the four-bar-link actuator is very difficult. To control the proposed robot along the prescribed trajectory, a sliding mode control algorithm was applied with compensation function for the modeling errors. To show performance of the proposed controller, a computer simulation was performed, and its results was presented.

A Study on an Adaptive Robust Fuzzy Controller with GAs for Path Tracking of a Wheeled Mobile Robot

  • Nguyen, Hoang-Giap;Kim, Won-Ho;Shin, Jin-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.12-18
    • /
    • 2010
  • This paper proposes an adaptive robust fuzzy control scheme for path tracking of a wheeled mobile robot with uncertainties. The robot dynamics including the actuator dynamics is considered in this work. The presented controller is composed of a fuzzy basis function network (FBFN) to approximate an unknown nonlinear function of the robot complete dynamics, an adaptive robust input to overcome the uncertainties, and a stabilizing control input. Genetic algorithms are employed to optimize the fuzzy rules of FBFN. The stability and the convergence of the tracking errors are guaranteed using the Lyapunov stability theory. When the controller is designed, the different parameters for two actuator models in the dynamic equation are taken into account. The proposed control scheme does not require the accurate parameter values for the actuator parameters as well as the robot parameters. The validity and robustness of the proposed control scheme are demonstrated through computer simulations.

A SMA-based actuation system for a fish robot

  • Le, Chan Hoang;Nguyen, Quang Sang;Park, Hoon Cheol
    • Smart Structures and Systems
    • /
    • 제10권6호
    • /
    • pp.501-515
    • /
    • 2012
  • We design and test a shape memory alloy (SMA)-based actuation system that can be used to propel a fish robot. The actuator in the system is composed of a 0.1 mm diameter SMA wire, a 0.5 mm-thick glass/epoxy composite strip, and a fixture frame. The SMA wire is installed in a pre-bent composite strip that provides initial tension to the SMA wire. The actuator can produce a blocking force of about 200 gram force (gf) and displacement of 3.5 mm at the center of the glass/epoxy strip for an 8 V application. The bending motion of the actuator is converted into the tail-beat motion of a fish robot through a linkage system. The fish robot is evaluated by measuring the tail-beat angle, swimming speed, and thrust produced by the tail-beat motion. The tail-beat angle is about $20^{\circ}$, the maximum swimming speed is about 1.6 cm/s, and the measured average thrust is about 0.4 gf when the fish robot is operated at 0.9 Hz.