• Title/Summary/Keyword: Robo Advisor

Search Result 21, Processing Time 0.02 seconds

A Study about B2C investment consulting service using Robo-Advisor: Case of AndByeond Investment Management (로보 어드바이저를 활용한 B2C 투자자문 서비스 연구: 앤드비욘드 투자자문 사례)

  • Bae, Hanhee;Kim, Youngmin;Oh, Kyong Joo
    • Knowledge Management Research
    • /
    • v.19 no.1
    • /
    • pp.79-95
    • /
    • 2018
  • The purpose of this case study is to analyze the B2C security information service model using the robo-advisor, to develop various service models and to urge new companies to enter. Overseas robo-advisor service market is growing rapidly with the launch of various B2C service models beyond B2B. On the other hand, as the domestic market is dominated by B2B services and serviced just index portfolio which is nascent, it lacks products which are used for active asset management. Recently as the government announced the approval of online investment advisory service, the B2C market of domestic asset management has entered a growth phase, centered on generations familiar with IT. We propose to extend the concept of Robo-Advisor service in accordance with the financial market change. By that model, we will study the case of the algorithm of the investment masters' philosophy and contribute to the expansion of the B2C service market.

A deep learning analysis of the KOSPI's directions (딥러닝분석과 기술적 분석 지표를 이용한 한국 코스피주가지수 방향성 예측)

  • Lee, Woosik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.287-295
    • /
    • 2017
  • Since Google's AlphaGo defeated a world champion of Go players in 2016, there have been many interests in the deep learning. In the financial sector, a Robo-Advisor using deep learning gains a significant attention, which builds and manages portfolios of financial instruments for investors.In this paper, we have proposed the a deep learning algorithm geared toward identification and forecast of the KOSPI index direction,and we also have compared the accuracy of the prediction.In an application of forecasting the financial market index direction, we have shown that the Robo-Advisor using deep learning has a significant effect on finance industry. The Robo-Advisor collects a massive data such as earnings statements, news reports and regulatory filings, analyzes those and recommends investors how to view market trends and identify the best time to purchase financial assets. On the other hand, the Robo-Advisor allows businesses to learn more about their customers, develop better marketing strategies, increase sales and decrease costs.

Robo-Advisor Profitability combined with the Stock Price Forecast of Analyst (애널리스트의 주가 예측이 결합된 로보어드바이저의 수익성 분석)

  • Kim, Sun-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.199-207
    • /
    • 2019
  • This study aims to analyze the profitability of Robo-Advisors portfolio combined with the analysts' forecasts on the Korean stock prices. Sample stocks are 8 blue-chips and sample period is from 2003 to 2019. Robo-Advisor portfolio was suggested using the Black-Litterman model combined with the analysts' forecasts and its profitability was analyzed. Empirical result showed the suggested Robo-Advisor algorithm produced 1% annual excess return more than that of the benchmark. The study documented that the analysts' forecasts had an economic value when applied in the Robo-Advisor portfolio despite the prevalent blames from investors. The profitability on small or medium-sized stocks will need to be analyzed in the Robo-Advisor context because their information is relatively less known to investors and as such is expected to be strongly influenced by the analysts' forecasts.

A Case of Establishing Robo-advisor Strategy through Parameter Optimization (금융 지표와 파라미터 최적화를 통한 로보어드바이저 전략 도출 사례)

  • Kang, Mincheal;Lim, Gyoo Gun
    • Journal of Information Technology Services
    • /
    • v.19 no.2
    • /
    • pp.109-124
    • /
    • 2020
  • Facing the 4th Industrial Revolution era, researches on artificial intelligence have become active and attempts have been made to apply machine learning in various fields. In the field of finance, Robo Advisor service, which analyze the market, make investment decisions and allocate assets instead of people, are rapidly expanding. The stock price prediction using the machine learning that has been carried out to date is mainly based on the prediction of the market index such as KOSPI, and utilizes technical data that is fundamental index or price derivative index using financial statement. However, most researches have proceeded without any explicit verification of the prediction rate of the learning data. In this study, we conducted an experiment to determine the degree of market prediction ability of basic indicators, technical indicators, and system risk indicators (AR) used in stock price prediction. First, we set the core parameters for each financial indicator and define the objective function reflecting the return and volatility. Then, an experiment was performed to extract the sample from the distribution of each parameter by the Markov chain Monte Carlo (MCMC) method and to find the optimum value to maximize the objective function. Since Robo Advisor is a commodity that trades financial instruments such as stocks and funds, it can not be utilized only by forecasting the market index. The sample for this experiment is data of 17 years of 1,500 stocks that have been listed in Korea for more than 5 years after listing. As a result of the experiment, it was possible to establish a meaningful trading strategy that exceeds the market return. This study can be utilized as a basis for the development of Robo Advisor products in that it includes a large proportion of listed stocks in Korea, rather than an experiment on a single index, and verifies market predictability of various financial indicators.

Financial Instruments Recommendation based on Classification Financial Consumer by Text Mining Techniques (비정형 데이터 분석을 통한 금융소비자 유형화 및 그에 따른 금융상품 추천 방법)

  • Lee, Jaewoong;Kim, Young-Sik;Kwon, Ohbyung
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.1-24
    • /
    • 2016
  • With the innovation of information technology, non-face-to-face robo advisor with high accessibility and convenience is spreading. The current robot advisor recommends appropriate investment products after understanding the investment propensity based on the structured data entered directly or indirectly by individuals. However, it is an inconvenient and obtrusive way for financial consumers to inquire or input their own subjective propensity to invest. Hence, this study proposes a way to deduce the propensity to invest in unstructured data that customers voluntarily exposed during consultation or online. Since prediction performance based on unstructured document differs according to the characteristics of text, in this study, classification algorithm optimized for the characteristic of text left by financial consumers is selected by performing prediction performance evaluation of various learning discrimination algorithms and proposed an intelligent method that automatically recommends investment products. User tests were given to MBA students. After showing the recommended investment and list of investment products, satisfaction was asked. Financial consumers' satisfaction was measured by dividing them into investment propensity and recommendation goods. The results suggest that the users high satisfaction with investment products recommended by the method proposed in this paper. The results showed that it can be applies to non-face-to-face robo advisor.

Measures to minimize the side effects of the increased use of Artificial Intelligence Robo-Advisor (인공지능 로보어드바이저의 활성화에 따른 부작용 최소화를 위한 제도적 보완점)

  • Kim, Dong Ju;Kwon, Hun Yeong;Lim, Jong In
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.67-73
    • /
    • 2017
  • In this study, we mainly inquired into structural reforms of the current legal system that could minimize the side effects and protect financial customers as the use of AI robo-advisor were increasing. First, regarding a specific reform, it is necessary to introduce and establish a rapid detection system for unusual transactions by the Robo-advisor management company, the strict liability of the management company, the management company's mandatory obligation to obtain indemnity insurance, and limited criminal penalties. Furthermore, it is necessary to establish a comprehensive basic law regarding AI. In this basic law, the promotion of the development of AI technology and the minimization of side effects should be dealt with in harmony with each other. Like the approach of this study, we hope that similarly detailed and practical discussions will be made on the AI era from various perspectives in the future.

Development and Performance Analysis of Predictive Model for KOSPI 200 Index using Recurrent Neural Networks (순환 신경망 기술을 이용한 코스피 200 지수에 대한 예측 모델 개발 및 성능 분석 연구)

  • Kim, Sung Soo;Hong, Kwang Jin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.6
    • /
    • pp.23-29
    • /
    • 2017
  • Due to the success of Wealthfront, Betterment, etc., there is a growing interest in RoboAdvisor that is an automated asset allocation methodology globally. RoboAdvisor minimizes human involvement in managing assets, thereby reducing the costs of using services and eliminating human psychological factors. In this paper, we developed a predictive model for the KOSPI 200 Futures Index using deep learning, in order to replace the existing technical analysis technique. And the proposed model confirmed that When the KOSPI 200 Gift Index is small, it can be used to predict direction and price of index. In combination with the existing technical analysis, It is confirmed that the proposed models combining with existing technical analyses and can be applied to the RoboAdvisor Service in the future.

Legal liability of the management firm on hacked Robo-Advisor's stock price manipulation (해킹에 따른 로보어드바이저의 시세조종 행위와 운용사의 법적 책임)

  • Kim, Dong Ju;Kwon, Hun Yeong;Lim, Jong In
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.41-47
    • /
    • 2017
  • This study is a preceding research designed to deduct an institutional supplementary measure that minimizes any inevitable side effects from the improvement of artificial intelligence (AI) technology, which is the core element of the Fourth Industrial Revolution. In this specific case in which the Robo-Advisor, the representative type of AI-applied technology, was hacked by a third party and ended up manipulating prices, the study was intended to examine the responsibility relationship of the current legal framework. Although the current legal framework strictly prohibits acts such as hacking and manipulation, it was confirmed that if the Robo-Advisor management firm acts in compliance with protection measures regarding hacking, the firm is free from any legal liabilities and there is insufficient legal protection available for ordinary investors with grand-scale damage from price manipulation Based on this study, further studies are needed to derive more institutional supplementary measures on overcoming these problems.

A Study on the Priority of RoboAdvisor Selection Factors: From the Perspective of Analyzing Differences between Users and Providers Using AHP (로보어드바이저 선정요인의 우선순위에 관한 연구: AHP를 이용한 사용자와 제공자의 차이분석 관점으로)

  • Young Woong Woo;Jae In Oh;Yun Hi Chang
    • Information Systems Review
    • /
    • v.25 no.2
    • /
    • pp.145-162
    • /
    • 2023
  • Asset management is a complex and difficult field that requires insight into numerous variables and even human psychology. Thus, it has traditionally been the domain of professionals, and these services have been expensive to obtain. Changes are taking place in these markets, and the driving force is the digital revolution, so-called the fourth industrial revolution. Among them, the Robo-Advisor service using artificial intelligence technology is the highlight. The reason is that it is possible to popularize investment advisory services with convenient accessibility and low cost. This study aims to clarify what factors are critically important when selecting robo-advisors for service users and providers in Korea, and what perception differences exist in the selection factors between user and provider groups. The framework of the study was based on the marketing mix 4C model, and the design and analysis of the model used Delphi survey and AHP. Through the study design, 4 main criteria and 15 sub-criteria were derived, and the findings of the study are as follows. First, the importance of the four main criteria was in the order of customer needs > customer convenience > customer cost > customer communication for both groups. Second, looking at the 15 sub-criteria, it was found that investment purpose coverage, investment propensity coverage, fee level and accessibility factors were the most important. Third, when comparing between groups, the user group found that the fee level and accessibility factors were the most important, and the provider group recognized the investment purpose coverage and investment propensity coverage factors as important. This study derived useful implications in practice. First, when designing for the spread of the robo-advisor service, the basis for constructing a user-oriented system was prepared by considering the priority of importance according to the weight difference between the four main criteria and the 15 sub-criteria. In addition, the difference in priority of each sub-criteria shown in the group comparison and the cause of the sub-criteria with large weight differences were identified. In addition, it was suggested that it is very important to form a consensus to resolve the difference in perception of factors between those in charge of strategy and marketing and system development within the provider group. Academically, it is meaningful in that it is an early study that presented various perspectives and perspectives by deriving a number of robo-advisor selection factors. Through the findings of this study, it is expected that a successful user-oriented robo-advisor system can be built and spread in Korea to help users.

ETF risk management (ETF 위험관리에 관한 연구)

  • Lee, Woosik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.4
    • /
    • pp.843-851
    • /
    • 2017
  • The rise of the Robo-advisor represents one of the most profound shifts in FinTech. It also raises concerns about their financial management. As the most Robo-Advisors utilize ETFs, we seek to determine the appropriate risk management model in estimating 95% Value-at-Risk (VaR) and 99% VaR in this paper. The GARCH and the Markov regime wwitching GARCH are evaluated in terms of the accuracy of probability, the independence of extreme events occurrence and both. The result shows that the Markov regime switching GARCH can be a good ETF risk management tool since it can reflect financial market structural changes into the volatility.