• Title/Summary/Keyword: Road segmentation

Search Result 108, Processing Time 0.021 seconds

Vehicle Area Segmentation from Road Scenes Using Grid-Based Feature Values (격자 단위 특징값을 이용한 도로 영상의 차량 영역 분할)

  • Kim Ku-Jin;Baek Nakhoon
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1369-1382
    • /
    • 2005
  • Vehicle segmentation, which extracts vehicle areas from road scenes, is one of the fundamental opera tions in lots of application areas including Intelligent Transportation Systems, and so on. We present a vehicle segmentation approach for still images captured from outdoor CCD cameras mounted on the supporting poles. We first divided the input image into a set of two-dimensional grids and then calculate the feature values of the edges for each grid. Through analyzing the feature values statistically, we can find the optimal rectangular grid area of the vehicle. Our preprocessing process calculates the statistics values for the feature values from background images captured under various circumstances. For a car image, we compare its feature values to the statistics values of the background images to finally decide whether the grid belongs to the vehicle area or not. We use dynamic programming technique to find the optimal rectangular gird area from these candidate grids. Based on the statistics analysis and global search techniques, our method is more systematic compared to the previous methods which usually rely on a kind of heuristics. Additionally, the statistics analysis achieves high reliability against noises and errors due to brightness changes, camera tremors, etc. Our prototype implementation performs the vehicle segmentation in average 0.150 second for each of $1280\times960$ car images. It shows $97.03\%$ of strictly successful cases from 270 images with various kinds of noises.

  • PDF

Speed Sign Recognition by Using Hierarchical Application of Color Segmentation and Normalized Template Matching (컬러 세그멘테이션 및 정규화 템플릿 매칭의 계층적 적용에 의한 속도 표지판 인식)

  • Lee, Kang-Ho;Lee, Kyu-Won
    • The KIPS Transactions:PartB
    • /
    • v.16B no.4
    • /
    • pp.257-262
    • /
    • 2009
  • A method of the region extraction and recognition of a speed sign in the real road environment is proposed. The region of speed sign is extracted by using color information and then numbers are segmented in the region. We improve the recognition rate by performing an incline compensation of the speed sign for directions clockwise and counterclockwise. In image sequences of the real road environment, a robust recognition results are achieved with speed signs at normal condition as well as inclined.

Validation of Semantic Segmentation Dataset for Autonomous Driving (승용자율주행을 위한 의미론적 분할 데이터셋 유효성 검증)

  • Gwak, Seoku;Na, Hoyong;Kim, Kyeong Su;Song, EunJi;Jeong, Seyoung;Lee, Kyewon;Jeong, Jihyun;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.104-109
    • /
    • 2022
  • For autonomous driving research using AI, datasets collected from road environments play an important role. In other countries, various datasets such as CityScapes, A2D2, and BDD have already been released, but datasets suitable for the domestic road environment still need to be provided. This paper analyzed and verified the dataset reflecting the Korean driving environment. In order to verify the training dataset, the class imbalance was confirmed by comparing the number of pixels and instances of the dataset. A similar A2D2 dataset was trained with the same deep learning model, ConvNeXt, to compare and verify the constructed dataset. IoU was compared for the same class between two datasets with ConvNeXt and mIoU was compared. In this paper, it was confirmed that the collected dataset reflecting the driving environment of Korea is suitable for learning.

CS Road Map unifying service quality managment, customer satisfaction and value creation (서비스 품질 관리를 통한 고객 만족과 가치 창출을 위한 Road Map)

  • 우지영;윤의탁;박상찬
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2004.04a
    • /
    • pp.371-375
    • /
    • 2004
  • As the importance of customers has been emphasized, most companies began to operate various CRM strategies to understand and manage customers' needs. The investments that businesses are making are categorized into four areas. The first area of investments is in contact centers and channels to manage the voice of customers. The second area is in loyalty management, target marketing using segmentation, profiling, profitability analysis and targeting. The third one is involved in the measurement of customer satisfaction. The last one is planning to deliver products and services to appropriate customers. Despite the various efforts, it is lowering the efficiency of these investments and interrupting their value creation that these are being operated independently in different departments. All CRM activities of an enterprise should be processed interactively and consistently for a common goal; value creation, to overcome these shortcomings. In this research, we propose CS Road Map that systematizes the four kinds of CRM activities; VOC management, survey activities, loyalty management and planning. Under this road map, these four activities will achieve the improvement of service qualities, customer satisfaction and further value creation. This paper demonstrates the road map that is built for a service industry emphasizing the objectives and strategies of the four categories.

  • PDF

Autonomous pothole detection using deep region-based convolutional neural network with cloud computing

  • Luo, Longxi;Feng, Maria Q.;Wu, Jianping;Leung, Ryan Y.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.745-757
    • /
    • 2019
  • Road surface deteriorations such as potholes have caused motorists heavy monetary damages every year. However, effective road condition monitoring has been a continuing challenge to road owners. Depth cameras have a small field of view and can be easily affected by vehicle bouncing. Traditional image processing methods based on algorithms such as segmentation cannot adapt to varying environmental and camera scenarios. In recent years, novel object detection methods based on deep learning algorithms have produced good results in detecting typical objects, such as faces, vehicles, structures and more, even in scenarios with changing object distances, camera angles, lighting conditions, etc. Therefore, in this study, a Deep Learning Pothole Detector (DLPD) based on the deep region-based convolutional neural network is proposed for autonomous detection of potholes from images. About 900 images with potholes and road surface conditions are collected and divided into training and testing data. Parameters of the network in the DLPD are calibrated based on sensitivity tests. Then, the calibrated DLPD is trained by the training data and applied to the 215 testing images to evaluate its performance. It is demonstrated that potholes can be automatically detected with high average precision over 93%. Potholes can be differentiated from manholes by training and applying a manhole-pothole classifier which is constructed using the convolutional neural network layers in DLPD. Repeated detection of the same potholes can be prevented through feature matching of the newly detected pothole with previously detected potholes within a small region.

Multi-Scale Dilation Convolution Feature Fusion (MsDC-FF) Technique for CNN-Based Black Ice Detection

  • Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.3
    • /
    • pp.17-22
    • /
    • 2023
  • In this paper, we propose a black ice detection system using Convolutional Neural Networks (CNNs). Black ice poses a serious threat to road safety, particularly during winter conditions. To overcome this problem, we introduce a CNN-based architecture for real-time black ice detection with an encoder-decoder network, specifically designed for real-time black ice detection using thermal images. To train the network, we establish a specialized experimental platform to capture thermal images of various black ice formations on diverse road surfaces, including cement and asphalt. This enables us to curate a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Additionally, in order to enhance the accuracy of black ice detection, we propose a multi-scale dilation convolution feature fusion (MsDC-FF) technique. This proposed technique dynamically adjusts the dilation ratios based on the input image's resolution, improving the network's ability to capture fine-grained details. Experimental results demonstrate the superior performance of our proposed network model compared to conventional image segmentation models. Our model achieved an mIoU of 95.93%, while LinkNet achieved an mIoU of 95.39%. Therefore, it is concluded that the proposed model in this paper could offer a promising solution for real-time black ice detection, thereby enhancing road safety during winter conditions.

Detection Algorithm of Road Surface Damage Using Adversarial Learning (적대적 학습을 이용한 도로 노면 파손 탐지 알고리즘)

  • Shim, Seungbo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.95-105
    • /
    • 2021
  • Road surface damage detection is essential for a comfortable driving environment and the prevention of safety accidents. Road management institutes are using automated technology-based inspection equipment and systems. As one of these automation technologies, a sensor to detect road surface damage plays an important role. For this purpose, several studies on sensors using deep learning have been conducted in recent years. Road images and label images are needed to develop such deep learning algorithms. On the other hand, considerable time and labor will be needed to secure label images. In this paper, the adversarial learning method, one of the semi-supervised learning techniques, was proposed to solve this problem. For its implementation, a lightweight deep neural network model was trained using 5,327 road images and 1,327 label images. After experimenting with 400 road images, a model with a mean intersection over a union of 80.54% and an F1 score of 77.85% was developed. Through this, a technology that can improve recognition performance by adding only road images was developed to learning without label images and is expected to be used as a technology for road surface management in the future.

Effective Road Area Extraction in Satellite Images Using Texture-Based BP Neural Network (텍스쳐 기반 BP 신경망을 이용한 위성영상의 도로영역 추출)

  • Xu, Zheng;Kim, Bo-Ram;Oh, Jun-Taek;Kim, Wook-Hyun
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.3
    • /
    • pp.164-169
    • /
    • 2009
  • This paper proposes a road detection method using BP(Back-Propagation) neural network based on texture information of the each candidate road region segmented for satellite images. To segment the candidate road regions, the histogram-based binarization method proposed by N.Otsu is firstly performed and the neighboring regions surrounding road regions are then removed. And after extracting the principal color using the histogram of the segmented foreground, the candidate road regions are classified into the regions within ${\pm}25$ of the principal color. Finally, the road regions are segmented using BP neural network based on texture information of the candidate regions. The texture information in this paper is calculated using co-occurrence matrix and is used as an input data of the BP neural network. The proposed method is based on the fact that the road has the constant intensity and shape. The experiment demonstrated the validity of the proposed method and showed 90% detection accuracy for the various images.

  • PDF

Finding Stop Position of Taxis using IoV data and road segment algorithm (IoV 데이터와 도로 분할 알고리즘을 이용한 택시 정차위치 파악)

  • Lim, Dong-jin;Onueam, Athita;Jung, Han-min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.590-592
    • /
    • 2018
  • Taxis that are illegally parked on the road to catch customer can cause traffic congestion and sometimes cause traffic accidents. Stop position of taxis is determined by the long term experience of taxi drivers. In this study, We provide information to taxi drivers and customer who visit in first time through finding stop position of taxis by time. To do this, we used the Internet of Vehicle (IoV) data collected from sensors installed in 40 taxis. Previous studies attempted by forming a cluster around a taxi. Since this method is centered on a taxi, the position of the cluster changes depending on the location of the taxi. In this study, we use a road segmentation algorithm to solve these problems. Unlike the previous studies, since the cluster is formed around the road, the position of the cluster is fixed and it is not affected by the number of taxis, so it is possible to grasp the stop position in real time. The road segmentation is made up of 30m units, and map the taxi location data divided into hourly, weekday, and weekend to the nearest point. As a result of the mapping, it was difficult to see a big difference in the time of week because there were few taxis to operate on weekends, but in case of weekdays, the difference of stop position between the commute time zone and the night time zone was confirmed. The results of this study suggest that it will be possible to propose the prevention of taxi illegally driving taxi and the location of the taxi stand.

  • PDF

An Enhanced Two-Stage Vehicle License Plate Detection Scheme Using Object Segmentation for Declined License Plate Detections

  • Lee, Sang-Won;Choi, Bumsuk;Kim, Yoo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.9
    • /
    • pp.49-55
    • /
    • 2021
  • In this paper, an enhanced 2-stage vehicle license plate detection scheme using object segmentation is proposed to detect accurately the rotated license plates due to the inclined photographing angles in real-road situations. With the previous 3-stage vehicle license plate detection pipeline model, the detection accuracy is likely decreased as the license plates are declined. To resolve this problem, we propose an enhanced 2-stage model by replacing the frontal two processing stages which are for detecting vehicle area and vehicle license plate respectively in only rectangular shapes in the previous 3-stage model with one step to detect vehicle license plate in arbitrarily shapes using object segmentation. According to the comparison results in terms of the detection accuracy of the proposed 2-stage scheme and the previous 3-stage pipeline model against the rotated license plates, the accuracy of the proposed 2-stage scheme is improved by up to about 20% even though the detection process is simplified.