Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원 교통물류연구사업의 연구비지원 (22TLRP-C152478-04)과 과학기술정보통신부 및 한국지능정보사회진흥원 인공지능 학습용 데이터 구축 사업의 연구결과로 수행된 결과물입니다.
References
- Tan, M. and Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. In International conference on machine learning, p.6105-6114. PMLR.
- Elmenreich, W. (2002). An introduction to sensor fusion. Vienna University of Technology, Austria, 502, p.1-28
- Song, T., Jang, H., Ha, N., Yeon, Y., Kwon, K., and Sohn, K. (2019). Deep Multi-task Network for Simultaneous Hazy Image Semantic Segmentation and Dehazing. Journal of Korea Multimedia Society, 22(9), 1000-1010. https://doi.org/10.9717/KMMS.2019.22.9.1000
- Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz, N., and Terzopoulos, D. (2022). Image segmentation using deep learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(7), p.3523-3542
- H. S. Baek, J. H. Shin and S. J. Kim, "Development of AI-Based Condition Monitoring System for Failure Diagnosis of Excavator's Travel Device", Journal of Drive and Control, Vol.18, No.1, pp.24-30, 2021. https://doi.org/10.7839/KSFC.2021.18.1.024
- Lee, J., Gwak, G., Kim, K., Kang, W., Shin, D., and Hwang, S. (2021). Development of virtual simulator and database for deep learning-based object detection. Journal of Drive and Control, 18(4), p.9-18. 2022. https://doi.org/10.7839/KSFC.2021.18.4.009
- Kim, K., Lee, J., Gwak, S., Kang, W., Shin, D., and Hwang, S. (2022). Construction of database for deep learning-based occlusion area detection in the virtual environment. Journal of Drive and Control, 19(3), p.9-15. 2022. https://doi.org/10.7839/KSFC.2022.19.3.009
- Weng, X., Man, Y., Cheng, D., Park, J., O'toole, M., and Kitani, K. (2020). All-in-one drive: A large-scale comprehensive perception dataset with high-density long-range point clouds.
- Toldo, M., Maracani, A., Michieli, U., and Zanuttigh, P. (2020). Unsupervised domain adaptation in semantic segmentation: a review. Technologies, 8(2), p.35. https://doi.org/10.3390/technologies8020035
- Chen, Y., Liu, L., Tao, J., Chen, X., Xia, R., Zhang, Q., Xiong, J., Yang, K., and Xie, J. (2021). The image annotation algorithm using convolutional features from intermediate layer of deep learning. Multimedia Tools and Applications, 80(3), p.4237-4261. https://doi.org/10.1007/s11042-020-09887-2
- Contributors, M. (2020). MMSegmentation: Openmmlab semantic segmentation toolbox and benchmark. https://github.com/open-mmlab/mmsegmentation.
- Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S., and Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on computer vision and pattern recognition, p.3213-3223.
- Geyer, J., Kassahun, Y., Mahmudi, M., Ricou, X., Durgesh, R., Chung, A., Hauswald, L., Pham, H., et al. (2020). A2d2: Audi autonomous driving dataset. arXiv preprint arXiv:2004.06320.