Acknowledgement
본 연구는 국토교통부/국토교통과학기술진흥원 교통물류연구사업의 연구비지원 (22TLRP-C152478-04)과 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터육성지원사업의 연구결과로 수행된 결과물입니다. (IITP-2022-2018-0-01426)
References
- C. Y. Chan, "Advancements, prospects, and impacts of automated driving systems," International journal of transportation science and technology, Vol.6, No.3, pp.208-216, 2017. https://doi.org/10.1016/j.ijtst.2017.07.008
- L. Liangzhi, K. Ota and M. Dong, "Humanlike driving: Empirical decision-making system for autonomous vehicles," IEEE Transactions on Vehicular Technology, Vol.67, No.8, pp.6814-6823, 2018. https://doi.org/10.1109/tvt.2018.2822762
- Y. Chen, C. Dong, P Palanisamy, P. Mudalige, K. Muelling and J. M. Dolan, "Attention-based hierarchical deep reinforcement learning for lane change behaviors in autonomous driving," Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2019.
- X. Liang, T. Wang, L. Yang and E. Xing, "Cirl: Controllable imitative reinforcement learning for vision-based self-driving," Proceedings of the European conference on computer vision (ECCV), pp-584-599, 2018.
- K. S. Kim, J. I. Lee, S. W. Gwak, W. Y. Kang, D. Y. Shin and S. H. Hwang, "Construction of Database for Deep Learning-based Occlusion Area Detection in the Virtual Environment," Journal of Drive and Control, Vol.19, No.3, pp.9-15, 2022. https://doi.org/10.7839/KSFC.2022.19.3.009
- J. I. Lee, G. S. Gwak, K. S. Kim, W. Y. Kang, D. Y. Shin and S. H. Hwang, "Development of Virtual Simulator and Database for Deep Learning-based Object Detection," Journal of Drive and Control, Vol.18, No.4, pp.9-18, 2021. https://doi.org/10.7839/KSFC.2021.18.4.009
- S. Wang, D. Jia and X. Weng, "Deep reinforcement learning for autonomous driving," arXiv:1811.11329, 2018.
- J. Chen, B. Yuan and M. Tomizuka, "Model-free deep reinforcement learning for urban autonomous driving," 2019 IEEE intelligent transportation systems conference (ITSC), 2019.
- C. Desjardins and B. Chaib-draa. "Cooperative adaptive cruise control: A reinforcement learning approach," IEEE Transactions on intelligent transportation systems, Vol.12, No.4, pp.1248-1260, 2021. https://doi.org/10.1109/TITS.2011.2157145
- A. Folkers, M. Rick and C. Buskens, "Controlling an autonomous vehicle with deep reinforcement learning," 2019 IEEE Intelligent Vehicles Symposium (IV), 2019.
- O. P. Gil, R. Barea, E. L. Guillen, L. M. Bergasa, C. G. Huelamo, R. Gutierrez and A. D. Diaz, "Deep reinforcement learning based control for autonomous vehicles in carla," Multimedia Tools and Applications, Vol.81, No.3, pp.3553-3576, 2022. https://doi.org/10.1007/s11042-021-11437-3
- A. Feher, S. Aradi and T, Becsi, "Online Trajectory Planning with Reinforcement Learning for Pedestrian Avoidance," Electronics, Vol.11, No.15, 2022.
- M. Yoshimura, G. Fujimoto, A. Kaushik, B. K. Padi, M. Dennison, I. Sood, K. Sarkar, A. Muneer, "Autonomous Emergency Steering Using Deep Reinforcement Learning For Advanced Driver Assistance System," 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE), 2020.
- R. S. Sutton, D. McAllester, S. Singh, Y. Mansour, "Policy gradient methods for reinforcement learning with function approximation," Advances in neural information processing systems, Vol.12, 1999.
- J. Schulman, F. Wolski, P. Dhariwal, A. Radford, O. Klimov, "Proximal policy optimization algorithms," arXiv:1707.06347, 2017.
- D. Y. Yu, D. G. Kim, H. S. Choi and S. H. Hwang, "Hybrid Control Strategy for Autonomous Driving System using HD Map Information," Journal of Drive and Control, Vol.17, No.4, pp.80-86, 2020. https://doi.org/10.7839/KSFC.2020.17.4.080
- A. Kesting, M. Treiber and D, Helbing. "Enhanced intelligent driver model to access the impact of driving strategies on traffic capacity," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol.368, No.1928, pp-4585-4605, 2010. https://doi.org/10.1098/rsta.2010.0084