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Abstract  

In this paper, we propose a black ice detection system using Convolutional Neural Networks (CNNs). Black ice poses a serious 

threat to road safety, particularly during winter conditions. To overcome this problem, we introduce a CNN-based architecture for 

real-time black ice detection with an encoder-decoder network, specifically designed for real-time black ice detection using 

thermal images. To train the network, we establish a specialized experimental platform to capture thermal images of various black 

ice formations on diverse road surfaces, including cement and asphalt. This enables us to curate a comprehensive dataset of 

thermal road black ice images for a training and evaluation purpose. Additionally, in order to enhance the accuracy of black ice 

detection, we propose a multi-scale dilation convolution feature fusion (MsDC-FF) technique. This proposed technique 

dynamically adjusts the dilation ratios based on the input image's resolution, improving the network's ability to capture fine-

grained details. Experimental results demonstrate the superior performance of our proposed network model compared to 

conventional image segmentation models. Our model achieved an mIoU of 95.93%, while LinkNet achieved an mIoU of 95.39%. 

Therefore, it is concluded that the proposed model in this paper could offer a promising solution for real-time black ice detection, 

thereby enhancing road safety during winter conditions. 
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1. Introduction1 
 

Road safety is a critical concern worldwide, with 

millions of accidents occurring annually due to various 

factors such as adverse weather conditions. Among these, 

black ice is one of the most hazardous and unpredictable 

road conditions, particularly during winter seasons. Black 

ice refers to a transparent and highly slippery layer of ice 

that forms on road surfaces, with the underlying road surface 
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visible through the layers of ice. On dark roads such as 

asphalt, black ice appears black, hence its name is originated 

from it. Black ice on roads visually resembles a wet surface 

and is not easily identifiable to the naked eye as shown in 

Fig. 1. This phenomenon poses a significant threat to 

motorists, leading to a higher risk of accidents, injuries, and 

even fatalities (Park et al., 2017, Smith et al., 2017).  

Black ice forms when the temperature drops below 0°C, 

resulting in a thin layer of ice formed by moisture on the 
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road surface. It primarily occurs in shaded areas such as 

mountainous regions, roads with many trees, tunnel 

entrances, and bridge road surfaces where sunlight does not 

reach (Korea Traffic Accident Analysis System). As 70% of 

the Korean land is mountainous, many roads are shaded, 

making it easier for black ice to form on the road surface 

during winter. According to statistics on winter traffic 

accidents from 2015 to 2019 released by the Korean 

National Police Agency, out of a total of 7,236 accidents, 

there were 186 fatalities due to snow-related accidents and 

706 fatalities due to black ice, which is 3.8 times higher than 

the fatalities from snow-related accidents (Korea Traffic 

Accident Analysis System). Additionally, accidents caused 

by black ice often result in secondary and tertiary damages, 

leading to major disasters and an increased likelihood of 

chain collisions. While recent advancements in road 

condition detection-based early warning systems for traffic 

safety have gained attention, comprehensive research on 

black ice detection is limited. 

 

 
Figure 1: Black ice on road surfaces in real-

world scenario 
 

Detecting black ice in real-time is a challenging task due 

to its elusive nature and the potential dangers it presents to 

road users. Traditional methods for black ice detection rely 

heavily on weather forecasting systems and ground-based 

sensors, which may not provide accurate and timely 

information. Therefore, due to the difficulty in detecting 

black ice, there is a growing need for advanced technologies 

that can enable real-time black ice detection and assess the 

presence of black ice on the road, thereby providing timely 

warnings to drivers. Moreover, by implementing black ice 

detection devices, driver safety can be ensured, and the 

occurrence rate of traffic accidents can be reduced. 

Black ice, a transparent ice layer on road surfaces, is 

notoriously difficult to detect due to its minimal visual cues. 

Traditional computer vision methods struggle to capture the 

subtle features associated with black ice, thus necessitating 

the need for more sophisticated techniques. In recent years, 

deep learning techniques, particularly Convolutional Neural 

Networks (CNNs), have demonstrated remarkable success 

in various computer vision tasks, including image 

recognition, object detection, and semantic segmentation. 

The ability of CNNs to automatically learn and extract 

relevant features from raw data makes them a promising 

approach for black ice detection on road surfaces 

(Krizhevsky et al., 2012). 

In this paper, we leverage the capabilities of CNNs and 

introduce a multi-scale dilation convolution feature fusion 

(MsDC-FF) technique to enhance black ice detection 

accuracy. Thus, the proposed model can achieve real-time 

and accurate detection of black ice. The proposed technique 

incorporates multi-scale dilation convolution (MsDC), 

which involves applying dilation filters of varying sizes to 

capture features at different scales. By adjusting the spacing 

within the kernel, we increase the diversity of feature 

extraction. The fusion of these multi-scale dilation 

convolution features enhances the CNN's ability to identify 

black ice regions effectively.  

In the following sections, we will describe the 

architecture of our black ice detection system in detail with 

methodology. The remainder of this paper is organized as 

follows: Section 2 provides an overview of related work on 

black ice detection and the application of CNNs in computer 

vision tasks. Section 3 presents the methodology and 

architectural details of our proposed in detail. In Section 4, 

we will discuss the experimental setup, including the 

construction of our thermal road black ice dataset. 

Furthermore, it is concluded that the results of extensive 

evaluations are presented comparing the performance of our 

system with existing image segmentation models.  

 

 

2. Related Work  
 

Many studies have explored black ice detection using 

image-based methods, Q. Lin et al. (2017) designed a road 

icing detection system based on OpenCV+Python, and a 

Support Vector Machine (SVM) classifier was employed to 

identify four types of road conditions: dry, wet, snowy, and 

icy. Lee et al. (2020) created a black ice detection dataset 

using Google image search and utilized CNN deep learning 

techniques to detect dry, wet, snowy, and black ice 

conditions, achieving a recognition rate of 96%. These 

research works highlight the effectiveness of using CNN-

based methods for black ice detection.  

With the widespread availability of cameras, images 

have become a convenient, fast, and cost-effective method 

for acquiring road information. Meanwhile, research on 

camera-based road surface black ice monitoring remains 

relatively limited. Therefore, this paper adopts an image-

based road black ice detection with a deep neural network 

model. The following research works on image detection 

based on each proposed deep neural network are considered 

in this paper for performance comparison purpose to the 

proposed network model. These model are FCN, U-Net, 

DeepLabv3+, PSPNet, ENet, and LinkNet. The summary of 
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approaches adopted in these models are as following: 1) 

FCN: Long et al. (2015) introduced a Fully Convolutional 

Network with imprecise edge segmentation due to 

information loss during down-sampling and up-sampling. 2) 

U-Net: Ronneberger et al. (2015) proposed an encoder-

decoder model with concatenation of feature maps for 

improved segmentation. 3) DeepLabv3+: Chen et al. (2017) 

revisited DeepLabv3+ with dilated convolutions, ASPP, and 

CRF post-processing for accurate segmentation. 4) PSPNet: 

Zhao et al. (2017) combined ResNet and dilated networks 

with parallel pooling and up-sampling for scale-specific 

feature information and refined segmentation. 5) ENet: 

Paszke et al. (2016) introduced an efficient neural network 

with bottleneck modules and filter decomposition for 

precise segmentation and reduced complexity. 6) LinkNet: 

Chaurasia and Culurciello (2017) proposed a network with 

residual modules for enhanced feature extraction and 

optimized computation in real-time segmentation. 

 
 

3. Methodology  

 
This paper proposes following key construction 

background. 1) CNN-based black ice detection using 

thermal image: Thermal cameras are capable of detecting 

temperature variations on road surfaces, allowing us to 

distinguish regions with black ice from non-icy areas. By 

exploiting the thermal signatures of black ice, our system 

enhances the detection accuracy, even in challenging visual 

conditions (Breckon & Fisher, 2012). 2) Black ice dataset 

construction: Based on the research work on a 

comprehensive dataset of thermal road black ice images in 

(Wang et al., 2019; Kim et al., 2021), we construct black ice 

dataset that includes diverse formations of black ice on 

different road surfaces, such as cement and asphalt. This 

dataset serves as a valuable resource for training and 

benchmarking the performance of our proposed system. 3) 

Multi-scale dilation convolution feature fusion: To enhance 

the accuracy of black ice detection, we introduce a novel 

technique called multi-scale dilation convolution feature 

fusion (MsDC-FF). This technique adapts the dilation ratios 

of convolutional filters based on the resolution of input 

images. By incorporating multi-scale contextual 

information, our approach improves the system's ability to 

detect and segment black ice areas accurately (Huang et al. 

2017). 

 

3.1. Network Structure  
 

This paper introduces a CNN-based architecture for real-

time black ice detection with an encoder-decoder network for 

infrared images. Based on constructed infrared black ice road 

data set, our CNN-based model is trained for establishing a 

comprehensive dataset of thermal road black ice images for 

a training and evaluation purpose.  

 

 
Figure 2: Illustration of black ice semantic segmentation 

training module 

 

For enhancing the accuracy of black ice detection, a 

multi-scale dilation convolution feature fusion (MsDC-FF) 

technique is proposed. With adjustment of the dilation ratios 

based on the input image's resolution, this MsDC-FF 

technique can improve the network's ability. Figure 2 shows 

the illustration of black ice semantic segmentation training 

module.  

 

3.2. Multi-Scale Dilated Convolution Feature 

Fusion (MsDC-FF) Network Framework 
 

The multi-scale dilated convolutional feature fusion 

module is utilized to fully integrate low-level features and 

high-level features, and thereby it establishes a multi-scale 

convolutional attention module. A multi-scale information 

can help resolve ambiguous boundaries and produce more 

robust extraction results. In particular, thermal images have 

ambiguous boundaries and weak contrast features compared 

to visible light images, making it suitable to propose an 

encoder-decoder deep learning model based on multi-scale 

dilated convolution feature fusion. 

The network architecture proposed in this paper is 

divided into two parts: an encoder and a decoder. The 

encoder consists of three stages of encoder blocks, while the 

decoder consists of four stages of decoder blocks, as shown 

in Figure 3. To reduce the model size, the early stages of the 

encoder block use two convolution layers to reduce the 

resolution to one-fourth and restore the original image size 

through convolution layers after passing through the decoder. 

Infrared Black Ice Road 
Surface Images

Image 
Processing

Data 
Training

Infrared Black Ice 
Road Dataset

Black Ice Segmentation Network
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Figure 3: Network architecture diagram of the proposed C

NN-based model 
 

The encoder block expands the receptive field by a 

method that extends the feature map information, and the 

multi-scale dilated convolution extracts feature information 

from thermal road images by parallelly connecting dilated 

convolution layers with different dilation rates. In the 

decoder block, transpose convolutions are used instead of up-

sampling to restore the image size and detailed feature 

information.  

Each convolution layer is activated by a ReLU layer and 

undergoes batch normalization for normalization. In Figure 

3, conv[(3x3), (3, 32), /2] and conv[(3x3), (3, 32), *2] 

represents a convolution operation, where the first value (3x3) 

indicates a convolution kernel size of 3x3. The second 

element (3, 32) and (32, 3) indicate the number of input and 

output channels, respectively. The third element, /2, 

represents down-sampling with a stride of 2, while *2 

represents up-sampling by a factor of 2.  

Figure 4 shows the encoder block with multi-scale 

dilated convolutional feature fusion (MsDC-FF) module 

with scalable dilation ratio. The proposed encoder block 

combines dilated convolution layers with different dilation 

rates in parallel, generating more scale features from larger 

receptive fields. Through a series of feature concatenations, 

neurons in each intermediate feature map encode semantic 

information from multiple scales, while different 

intermediate feature maps encode multi-scale information 

from different receptive fields. Through a series of dilated 

convolutions, neurons in the layers further back can obtain 

progressively larger receptive fields without degradation 

issues. 

 
Figure 4: Encoder block diagram of the paralled execution

 of convoultion with multi-
scale dilated convolutional feature fusion (MsDC-

FF) module 
 

 Dilated convolution selects pixels to be used in the 

convolution operation based on the dilation rate, as shown by 

the colored pixels in Figure 5. It allows for a larger receptive 

field without increasing the number of parameters compared 

to standard convolutional operations. Dilated convolution 

can solve the trade-off problem between feature map 

resolution and receptive field size. The dilation rate (dr) in 

Figure 5 represents the dilation factor, and Equation (1) can 

be used to calculate the receptive field size (𝐹𝑑𝑟) in dilated 

convolution.  

𝐹𝑑𝑟 = (2𝑑𝑟 + 1) × (2𝑑𝑟 + 1)        (1) 

where dr is the dilation ratio.  

 

 
Figure 5: Dilation convolution with different dilation ratios 

 
 

4. Simulation and Results  
 

4.1. Image Dataset  
 

The simulation setup used in this paper is as followings: 

TPV-IAHDR thermal cameras were used to capture the 

conv((1x1), (m, n=m/2)

conv((3x3), (n, n)) conv((3x3), (n, n))

conv((3x3), (n, n), dr=1) conv((3x3), (n, n), dr=2)

conv((3x3), (n, n)) conv((3x3), (n, n))

conv((3x3), (n, n), dr=1) conv((3x3), (n, n), dr=2)

conv((1x1), (n, m)

concatenate
C

+ +

+ +

b) dr = 2 c) dr = 3a) dr = 1
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entire process of black ice formation from the beginning in 

a video with a resolution of 1280x720. Figure 6 illustrates 

an example of the gradual formation of black ice, starting 

from a wet road surface, in one specific case. 

 

 
 Figure 6: An example of the gradual formation of black ic

e on a wet road surface. 
 

These thermal camera images are used for training image 

dataset, by sampling and cropping frames at intervals of 

200ms. This established total 1,156 black ice road images 

for 10 different cases and then, these images were divided 

into training, validation, and test datasets according to a ratio 

of 6:2:2. Therefore, the thermal road black ice dataset 

constructed in this paper is as shown in Table 1. The image 

dataset of the thermal road black ice was generated on 

asphalt roads and cement roads for different cases. These 

images are labeled by open-source image annotation tool, 

Labelme as shown in Figure 7. This displays some of the 

original images used in the paper along with their 

corresponding mask images. 

 
Table 1: Number of infrared black ice road furface images 

Dataset Type No. of Images  

Train Dataset 697 

Validation Dataset 229 

Test Dataset 229 

Total Dataset 1156 

 

 
 
Figure 7: Example of original images and labeled or masked 

images of black ice generated on asphalt roads and cement 
roads for different cases 
 

4.2. Simulation Setup and Results 

 
The simulation setup was conducted on the following 

platform: to use Ubuntu 18.04 LTS as OS, to use GPU of 

four NVIDIA GeForce RTX 2080 Ti with 11GB of memory 

each. The deep learning frameworks used were Keras and 

TensorFlow. In the simulation, the number of epochs was 

set to 100, and batch sizes of 1, 2, 4, 8, and 16 were tested. 

During the training process, the cross-entropy loss function 

was utilized, and the Adam optimizer was employed with a 

learning rate of 0.001. Learning rate decay was applied to 

expedite the learning process. 

Since random selection was used in parameter 

initialization and data selection during the network training, 

the network parameters and performance varied slightly 

with each training session. Therefore, in this paper, the 

training and testing processes were repeated ten times, and 

the average results were used to obtain more stable and 

reliable outcomes. 

The performance comparison metric of the accuracy of 

black ice area detection used in this paper is mIoU (Mean 

Intersection over Union) metric. Meanwhile IoU is a 

measure of the overlap between the segmentation result and 

the ground truth, mIoU is the ratio of the intersection and 

union of quantized results and ground truth values as in Eq. 

(2). 

𝑚IoU =
1

𝑁
 ∑

Χ𝑖𝑖

𝑇𝑖+∑ (Χ𝑗𝑖−Χ𝑖𝑖)𝑁
𝑗=1

𝑁
𝑖=1           (2) 

where N represents the number of pixel classes in the image, 

Ti denotes the total number of pixels for class i, Χ𝑖𝑖 

represents the number of pixels where the true class is i and 

the predicted class is also i, and Χ𝑗𝑖 represents the number 

of pixels where the true class is i but the predicted class is j. 

mIoU is a simple and representative metric widely used to 

evaluate the segmentation results of networks in most image 

segmentation tasks. Moreover, the computational 

complexity of the proposed image semantic segmentation 

model was measured by comparing the size of the model 

parameters in kilobytes (KB). 

The comparison evaluation result is shown in Table 2, 

where the proposed model has 2 parallel executions of 

convolutions in the encoder block. Encoder_block1, 

Encoder_block2, and Encoder_block3 have dilation rates 

with intervals of 4, 2, and 1, respectively. Table 2 shows the 

performance of mIoU and black ice IoU for conventional 

image segmentation networks, with batch sizes 8 and 16. 

The proposed CNN based MsDC-FF network model. 

In Table 2, due to the larger sizes of U-Net, PSPNet, and 

DeepLabV3+, they could not be executed with a batch size 

of 16 due to memory limitations. Among the conventional 

image segmentation networks, LinkNet achieved the highest 

segmentation performance with an mIoU value of 95.48% 

for batch size 16, while it achieved the best Black Ice IoU 

value of 94.37% for batch size 8. However, for batch size 8, 

the proposed network model outperformed LinkNet with an 

mIoU of 95.93% and a Black Ice IoU of 94.87%.  
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Table 2: Peroformance comparison results of conventional 

networks models ans the proposed MsCD-FF network model 

Network  
Model 

Parameters 
(KB) 

mIoU(%) 
Black Ice  

IoU(%) 

8  16 8 16 

U-Net 31,055 69.69 - 61.38 - 

FCN8 65,810 89.09 93.40 86.05 92.58 

PSPnet 134,325 85.85 - 83.27 - 

DeepLabV3+ 41,253 93.65 - 88.20 - 

ENet 371 94.35 94.36 93.81 93.10 

LinkNet 11,555 95.39 95.48 94.37 94.33 

Proposed  
MsCD-FF Net 

492 95.93 95.61 94.87 94.48 

 

 

5. Conclusion  

 
In this paper, we presented a novel approach for black 

ice detection using a CNN with a multi-scale dilation 

convolution feature fusion (MsDC-FF) technique. The 

proposed technique achieved significantly improved 

accuracy in black ice detection, outperforming the baseline 

models by a substantial margin. The results indicate that the 

incorporation of multi-scale dilation convolution features 

enhances the CNN's ability to detect black ice accurately. 

Our findings suggest that this technique has great potential 

for improving road safety during winter seasons by enabling 

more effective identification of black ice hazards. 

 

 

References   

 
Breckon, T., & Fisher, R. B. (2012). A novel thermal-based 

approach to black ice detection. In Proceedings of the 21st 

International Conference on Pattern Recognition (ICPR) (pp. 

1492-1495). IEEE. 

Chaurasia, A., & Culurciello, E. (2017, December). Linknet: 

Exploiting encoder representations for efficient semantic 

segmentation. In 2017 IEEE visual communications and image 

processing (VCIP) (pp. 1-4). IEEE. 

Chen, L. C., Papandreou, G., Schroff, F., & Adam, H. (2017). 

Rethinking atrous convolution for semantic image 

segmentation. arXiv preprint arXiv:1706.05587. 

Huang, G., Chen, D., Li, T., Wu, F., Van Der Maaten, L., & 

Weinberger, K. Q. (2017). Multi-scale dense networks for 

resource efficient image classification. arXiv preprint 

arXiv:1703.09844. 

Kim, S.-J., Yoon, W.-S., & Kim, Y.-K. (2021). Characteristics of 

Black Ice Using Thermal Imaging Camera. Journal of the 

Korean Society of Industry Convergence, 24(6_2), 873–882. 

https://doi.org/10.21289/KSIC.2021.24.6.873  

Korea Traffic Accident Analysis System [Internet]. Available: 

http://taas.koroad.or.kr/. 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). Imagenet 

classification with deep convolutional neural networks. 

Communications of the ACM, 60(6), 84-90.  

Lee, H., Hwang, K., Kang, M., & Song, J. (2020, December). 

Black ice detection using CNN for the Prevention of Accidents 

in Automated Vehicle. In 2020 International Conference on 

Computational Science and Computational Intelligence (CSCI) 

(pp. 1189-1192). IEEE. 

Li, Q., Ji, Y. W., Wang, Z. P., & Dou, X. (2017). Design of Road 

Icing Detection System Based on Opencv+ Python. Journal of 

Shaanxi University of Science & Technology (Natural Science 

Edition), 35(2), 158-164. 

Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional 

networks for semantic segmentation. In Proceedings of the 

IEEE conference on computer vision and pattern 

recognition (pp. 3431-3440).  

Park, G. Y., Lee, S. H., Kim, E. J., & Yun, B. Y. (2017). A case 

study on meteorological analysis of freezing rain and black ice 

formation on the load at winter. Journal of Environmental 

Science International, 26(7), 827-836.  

Paszke, A., Chaurasia, A., Kim, S., & Culurciello, E. (2016). Enet: 

A deep neural network architecture for real-time semantic 

segmentation. arXiv preprint arXiv:1606.02147. 

Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: 

Convolutional networks for biomedical image segmentation. 

In Medical Image Computing and Computer-Assisted 

Intervention–MICCAI 2015: 18th International Conference, 

Munich, Germany, October 5-9, 2015, Proceedings, Part III 18 

(pp. 234-241). Springer International Publishing. 

Smith, S., Williams, B. L., & Prato, C. G. (2017). Black ice 

detection. In Encyclopedia of Traffic Science (pp. 1-7). 

Springer. 

Wang, Q., Zhang, X., Chen, C., & Li, P. (2019). Black ice detection 

method based on the temperature field characteristic of thermal 

images. Journal of Advanced Transportation, 1-14. 

Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene 

parsing network. In Proceedings of the IEEE conference on 

computer vision and pattern recognition (pp. 2881-2890). 


