Image recognition is one of the most important research directions of pattern recognition. Image based road automatic identification technology is widely used in current society, the intelligence has become the trend of the times. This paper studied the image segmentation algorithm theory and its application in road signs recognition system. With the help of image processing technique, respectively, on road signs automatic recognition algorithm of three main parts, namely, image segmentation, character segmentation, image and character recognition, made a systematic study and algorithm. The experimental results show that: the image segmentation algorithm to establish road signs recognition model, can make effective use of smart phone system and application.
Haifeng Sima;Yushuang Xu;Minmin Du;Meng Gao;Jing Wang
KSII Transactions on Internet and Information Systems (TIIS)
/
제17권3호
/
pp.861-880
/
2023
Semantic segmentation of road scene is the key technology of autonomous driving, and the improvement of convolutional neural network architecture promotes the improvement of model segmentation performance. The existing convolutional neural network has the simplification of learning knowledge and the complexity of the model. To address this issue, we proposed a road scene semantic segmentation algorithm based on multi-task collaborative learning. Firstly, a depthwise separable convolution atrous spatial pyramid pooling is proposed to reduce model complexity. Secondly, a collaborative learning framework is proposed involved with saliency detection, and the joint loss function is defined using homoscedastic uncertainty to meet the new learning model. Experiments are conducted on the road and nature scenes datasets. The proposed method achieves 70.94% and 64.90% mIoU on Cityscapes and PASCAL VOC 2012 datasets, respectively. Qualitatively, Compared to methods with excellent performance, the method proposed in this paper has significant advantages in the segmentation of fine targets and boundaries.
본 논문은 watershed를 이용한 차도 분할 알고리즘을 제안하고 있다. 제안된 알고리즘은 차량과 차선 정보를 이용해 차도 마커와 배경 마커를 자동 생성하는 automatic marked watershed를 이용한 영역 분할 알고리즘이고 이는 지나치게 많은 영역이나 마커를 위한 수작업 같은 watershed 기반 영역 분할의 문제점들을 해결할 수 있다. 차도 마커는 차선은 포함되나 차량은 배제되는 순수한 차도 영역을 위한 속성을 포함하고 배경 마커는 차량과 배경을 포함하는 나머지 영역을 위한 속성을 포함하고 있다. 실제 도로 영상에 적용된 영역 분할 결과들은 제안된 알고리즘은 다양한 환경에서 적절한 마커들을 생성할 수 있고, 주행 차로와 양옆 차로를 포함한 필수 차도 영역을 적절하게 분할할 수 있는 것을 보여주고, 성능 면에 있어서는 제안된 알고리즘은 수작업으로 생성된 마커를 사용한 기존 알고리즘과 대등함을 보여준다.
In this paper, we propose a black ice detection platform framework using Convolutional Neural Networks (CNNs). To overcome black ice problem, we introduce a real-time based early warning platform using CNN-based architecture, and furthermore, in order to enhance the accuracy of black ice detection, we apply a multi-scale dilation convolution feature fusion (MsDC-FF) technique. Then, we establish a specialized experimental platform by using a comprehensive dataset of thermal road black ice images for a training and evaluation purpose. Experimental results of a real-time black ice detection platform show the better performance of our proposed network model compared to conventional image segmentation models. Our proposed platform have achieved real-time segmentation of road black ice areas by deploying a road black ice area segmentation network on the edge device Jetson Nano devices. This approach in parallel using multi-scale dilated convolutions with different dilation rates had faster segmentation speeds due to its smaller model parameters. The proposed MsCD-FF Net(2) model had the fastest segmentation speed at 5.53 frame per second (FPS). Thereby encouraging safe driving for motorists and providing decision support for road surface management in the road traffic monitoring department.
PURPOSES : This study evaluates the reliability of the patterns of changes in the road surface temperature during winter using a statistical technique. In addition, a flexible road segmentation method is developed based on the collected road surface temperature data. METHODS : To collect and analyze the data, a thermal mapping system that could be attached to a survey vehicle along with various other sensors was employed. We first selected the test route based on the date and the weather and topographical conditions, since these factors affect the patterns of changes in the road surface temperature. Each route was surveyed a total of 10 times on a round-trip basis at the same times (5 AM to 6 AM). A correlation analysis was performed to identify whether the weather conditions reported for the survey dates were consistent with the actual conditions. In addition, we developed a method for dividing the road into sections based on the consecutive changes in the road surface temperature for use in future applications. Specifically, in this method, the road surface temperature data collected using the thermal mapping system was compared continuously with the average values for the various road sections, and the road was divided into sections based on the temperature. RESULTS : The results showed that the comparison of the reported and actual weather conditions and the standard deviation in the observed road surface temperatures could produce a good indicator of the reliability of the patterns of the changes in the road surface temperature. CONCLUSIONS : This research shows how road surface temperature data can be evaluated using a statistical technique. It also confirms that roads should be segmented based on the changes in the temperature and not using a uniform segmentation method.
Recently, the spatial resolution of earth observation satellites is significantly increased to a few meters. Such high spatial resolution images definitely will provide lots of information for detail-thirsty remote sensing users. However, it is more difficult to develop automated image algorithms for automated image feature extraction and pattern recognition. In this study, we propose a two-stage procedure to extract road information from high resolution satellite images. At first stage, a watershed segmentation technique is developed to classify the image into various regions. Then, a knowledge is built for road and used to extract the road regions. In this study, we use panchromatic and multi-spectral images of the IKONOS satellite as test dataset. The experiment result shows that the proposed technique can generate suitable and meaningful road objects from high spatial resolution satellite images. Apparently, misclassified regions such as parking lots are recognized as road needed further refinement in future research.
컴퓨터 비전 시스템의 발달로 보안, 생체인식, 의료영상, 자율주행 등의 분야에 많은 발전이 있었다. 자율주행 분야에서는 특히 딥러닝을 이용한 객체인식, 탐지 기법이 주로 사용되는데, 자동차가 갈 수 있는 영역을 판단하기 위한 도로영역 인식이 특히 중요한 문제이다. 도로 영역은 일반적인 객체탐지에서 활용되는 사각영역인식과는 달리 비정형적인 형태를 띠므로, ROI 기반의 객체인식 구조는 적용할 수 없다. 본 논문에서는 Semantic segmentation 기법을 사용한 비정형적인 도로영역 인식에 맞는 심층 신경망 구조를 제안한다. 또한 도로영역에 특화된 네트워크 구조인 Multi-scale semantic segmentation 기법을 사용하여 성능이 개선됨을 입증하였다.
이미지 인식은 패턴인식의 중요한 한 연구 분야이다. 본 논문은 이미지 세그멘테이션 알고리즘을 소개하고, 이의 응용으로 도로 Sign 인식시스템에 적용하여 그 결과를 고찰하였다. 본 논문에서, 우리는 이미지 프로세싱 기술의 도움으로 도로 Sign 의 체계적인 연구를 하였고, 이에 해당하는 알고리즘을 만들었다. 도로 Sign을 인식하기 위하여, 본 논문은 이미지 세그멘테이션 알고리즘 파트와 이미지 인식파트의 두 부분으로 나누어서 기술하였다. 인식실험은 도로 Sign 인식 알고리즘 모델이 스마트 폰에 유용하게 사용될 것과, 그 외 여러분야에 사용될 수 있음을 보여 준다.
Journal of information and communication convergence engineering
/
제10권4호
/
pp.378-383
/
2012
This paper presents the implementation of an automatic road sign recognizer for an intelligent transport system. In this system, lists of road signs are processed with actions such as line segmentation, single sign segmentation, and storing an artificial sign in the database. The process of taking the video stream and extracting the road sign and storing in the database is called the road sign recognition. This paper presents a study on recognizing traffic sign patterns using a segmentation technique for the efficiency and the speed of the system. The image is converted from one scale to another scale such as RGB to grayscale or grayscale to binary. The images are pre-processed with several image processing techniques, such as threshold techniques, Gaussian filters, Canny edge detection, and the contour technique.
전방 추돌 경보 시스템(FCWS) 및 차선 이탈 경보 시스템(LDWS)에서 차선 및 객체 검출을 위한 관심영역은 차도영역으로 설정되어야 한다. 분수계 분할(watershed segmentation)방법은 차도영역을 분리하기에 효과적인 알고리즘이다. 이 알고리즘은 초기 seed에 속해있는 watershed line과 국부 최소값에 따라서 분할 결과가 다르게 나타나는데 차도 seed에 그 이외의 영역이나 차량이 포함될 경우에 차도 이외의 부분이 차도영역으로 포함되어 분할된다. 이런 문제점을 보완하기 위해 도로 환경에 따라 차도 seed를 적응적으로 변경해야 한다. 그 방법으로 영상을 여러 개의 관심영역으로 분할하여 차선을 검출하고 자기차선을 잇는 직선을 초기 seed로 설정한다. 설정된 seed에 차량이 검출되면 seed 위치를 조정하고 조정된 위치에서 차선을 지나지 않는다면 차선을 지나도록 seed의 크기를 조정하여 최종적인 seed를 결정한다. 최종적으로 결정된 seed를 통해서 도로환경에 따라 적응적으로 차도영역을 검출을 가능하게 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.