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Abstract 

 
Semantic segmentation of road scene is the key technology of autonomous driving, and the 
improvement of convolutional neural network architecture promotes the improvement of 
model segmentation performance. The existing convolutional neural network has the 
simplification of learning knowledge and the complexity of the model. To address this issue, 
we proposed a road scene semantic segmentation algorithm based on multi-task collaborative 
learning. Firstly, a depthwise separable convolution atrous spatial pyramid pooling is 
proposed to reduce model complexity. Secondly, a collaborative learning framework is 
proposed involved with saliency detection, and the joint loss function is defined using 
homoscedastic uncertainty to meet the new learning model. Experiments are conducted on 
the road and nature scenes datasets. The proposed method achieves 70.94% and 64.90% 
mIoU on Cityscapes and PASCAL VOC 2012 datasets, respectively. Qualitatively, 
Compared to methods with excellent performance, the method proposed in this paper has 
significant advantages in the segmentation of fine targets and boundaries. 
 
 
Keywords: Road scene semantic segmentation, collaborative learning, saliency detection, 
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1. Introduction 

Semantic segmentation, as the basis of image understanding, has been applied to imaging 
analysis [1], autonomous driving [2], augmented reality [3] and many other fields. Its 
purpose is to partition an image into several coherent and semantically meaningful parts by 
different colors [4]. Since the 1970s, image segmentation has been a classic challenge in the 
field of image processing, attracting many researchers to make efforts for it, for it is 
challenging in both traditional segmentation methods [5-8] and deep learning-based 
segmentation algorithms [9-14]. In the last decade, road image semantic segmentation, as a 
key technology for automatic driving, can provide important road condition information and 
ensure a safe ride. Consequently, it has important theoretical research significance and 
practical application needs.  

The Full Convolutional Neural Network (FCN) [9] achieves pixel-level semantic 
segmentation for the first time, which can accept input images of arbitrary size and achieve 
pixel-level classification. The CNN architecture and the idea of pixel-by-pixel classification 
adopted by the FCN laid the foundation for the development of semantic segmentation, then, 
Researchers have proposed UNet [10], SegNet [11], and DeepLab [12] and other FCN-based 
deep neural networks. Among many computer-vision tasks, saliency detection aims to 
identify the compelling areas in an image, which can provide support for other image 
understanding tasks. Since the emergence of FCN, visual saliency detection has also been 
greatly improved. Among them, ResNet [13] and VGG [14] are the most widely used in 
visual saliency detection tasks. Both above two tasks require precise pixel-level annotation, 
and the requirements for the model are relatively high, so there is a certain correlation 
between the two tasks, and many existing semantic segmentation methods have benefited a 
lot from visual saliency detection [15-16]. However, there is no discussion of the interaction 
between the two tasks, but only use the results of visual saliency detection as a preprocessing 
operation for semantic segmentation. To make full use of the segmentation cues from visual 
saliency detection, the two tasks can be trained together through collaborative learning to 
improve each other.  

At present, road scene semantic segmentation faces many challenges, such as, excavating 
the dissimilarity between different objects and the similarity between congener objects, to 
deal with the complexity of the road environment, and the changes in the relationship and 
position of objects caused by illumination, weather, shooting environment, etc. To adapt the 
model to environmental influences and to achieve accurate segmentation. First, to address 
fine-grained segmentation, Gao et al., [17] proposed an active and contrastive learning-based 
method. Which performs representation learning through comparison between image 
patchesThen, Chen et al., [18] introduced a Class-Guided Asymmetric Non-Local Network 
(CGAN-Net) Which emphasize class information in feature maps while reducing model 
complexity. However, feature fusion will introduce a certain amount of noise into the final 
semantic feature map, which will affect the accuracy of semantic segmentation. Finally, 
researchers propose to use parallel structures to capture richer contextual information. To 
approach this problem, Multi-Feature Fusion Network (MFNet) [19] is proposed, Which 
adopts parallel attention branch, semantic information acquisition branch and spatial 
information processing branch to process shallow and deep features. Meanwhile, asymmetric 
factorized (AF) blocks is used to process shallow features and deep features to obtain local 
and global information. 

At present, the disadvantages of road scene segmentation mainly contains: insufficient 
context information, loss of some spatial details and slow segmentation speed, which cannot 
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meet the requirements of real-time segmentation. Inspired by the above work, we propose a  
road scene semantic segmentation network based on the collaborative learning in this paper. 
The so-called collaborative learning refers to using the same network for information or 
knowledge sharing, and then processing different classification tasks through different 
classifiers. Compared with a single task, collaborative learning can better explore the 
relationship between tasks, obtain additional useful information, and enhancethe robustness 
of the model. Therefore, we consider saliency detection as a cascaded task, which shares the 
encoded feature information with the semantic segmentation task. Through collaborative 
learning, cascading tasks provide spatial information of salient objects, further enhancing the 
ability of knowledge acquisition. Meanwhile, inspired by the encoder-decoder structure, 
DeepLabV3+ is used as the backbone, Which performs multi-level processing of encoding 
features in a parallel manner to make up for some of the details lost in the down-sampling 
process and reduce the time for the decoder to learn features and the number of parameters. 
In order to improve the training efficiency of the atrous spatial pyramid pooling, we uses 
depthwise separable convolution instead of standard convolution of the atrous spatial 
pyramid pooling to reduce model complexity. Finally, the loss function of the multi-task 
model is improved. In multi-task learning, the weight of the loss function of each task affects 
the performance of the model to a certain extent, the traditional method of manually 
adjusting the task weight is too time-consuming and labor-intensive. This article uses the 
same variance uncertainty to set the weights of different tasks, and then select the optimal 
weights to improve the performance of the model. 

The main contributions of this paper are as follows: 
(1) We propose an improved Depthwise Separable Convolution-Atrous Spatial Pyramid 

Pooling (DSC-ASPP), which uses depthwise separable convolution to reduce model 
complexity. 

(2) We propose A collaborative learning Network for Saliency Detection and Semantic 
Segmentation. By sharing the features of the convolutional layer, saliency detection as a 
cascaded task to provide relevant information for semantic segmentation tasks and further 
improve the feature learning ability. 

(3) The homovariance uncertainty is derived and utilized to measure the joint loss 
function in the collaborative learning tasks. The uncertainty of classification tasks can 
capture the relative confidence between tasks, so as to learn the optimal weight of each task 

(4) We choose DeepLabV3+ based on the encoding-decoding structure as the backbone 
network to effectively compensate for the loss of context and spatial information and prove 
the effectiveness of this model on the Cityscapes and PASCAL VOC 2012 datasets. 

2. Related Work 

2.1 Image Semantic Segmentation 
Image Semantic Segmentation processes images using a pixel-by-pixel classification method. 
The development of deep learning has brought semantic segmentation into a new era, and the 
segmentation speed and accuracy have been greatly improved. As a pioneering work, FCN 
uses full convolution for image semantic segmentation. By using a convolutional layer 
instead of a fully connected layer, it can accept inputs of arbitrary size, which greatly 
promotes the development of semantic segmentation. Since then, Researchers have proposed 
many FCN-based semantic segmentation networks. Chen et al., [20] and Fisher Yu et al., [21] 
introduced dilated convolution on the basis of FCN and used atrous convolution with 
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different dilation rates instead of ordinary convolution to improve the receptive field of 
features. Wang et al., [22] proposes to use a hybrid dilated convolution module to replace the 
dilation convolution module to solve the grid effect caused by using dilation convolution, 
which can further expand the receptive field and avoid the complete loss of local information. 
Chen et al., [23] combined the pyramid pooling model on the basis of [12] and proposed the 
Atrous Spatial Pyramid Pooling (ASPP), which uses different dilation rates of atrous 
convolution to obtain features of different scales, perform feature fusion, and better handle 
multi-scale problems. Segnet [11] and UNet [10], on the other hand, use an encoder-decoder 
structure to establish the correlation between shallow features and deep features. Among 
them, the encoder performs feature extraction, and then the decoder gradually restores the 
resolution of the image. In recent years, researchers have focused their work on how to 
improve segmentation accuracy based on the encoder-decoder structure and have achieved 
remarkable results. For example, the ENet [24] and LEDNet [25] models use an asymmetric 
encoder-decoder structure to reduce the number of parameters and effectively speed up 
semantic segmentation. Therefore, this paper chooses the DeepLabv3+ network [26] with an 
encoder-decoder structure as the backbone network. 

2.2 Collaborative Learning 
At present, knowledge distillation [27], multi-task learning [28] and collaborative learning 
can improve neural network performance without increasing complexity. Knowledge 
distillation adopts the idea of “teacher-student network” and transfers the knowledge of the 
trained teacher network to another small student network through two homogeneous or 
heterogeneous networks, so that the performance of the student network can reach the best. 
However, it is computationally intensive due to the presence of two complex networks. 
Multi-task learning is to train several different models simultaneously by learning several 
related tasks together and exploring the correlation between tasks. Song et al., [29] proposed 
a collaborative learning method that uses different classifiers to train the same data on the 
same network. Sogaard [30] proved that the degree of correlation between tasks determines 
the performance of multi-task learning. Compared with a single-task model, collaborative 
learning can coordinate the complementarity between different features. Combining the 
advantages of multi-task learning and knowledge distillation can improve the generalization 
ability of the model without increasing the complexity of the network, so that the network 
can achieve more accurate results. In recent years, researchers have gradually increased their 
exploration of collaborative learning. For example: Zhou [31] proposed a collaborative 
learning network for lesion segmentation and disease classification of medical images. The 
lesion mask is applied to the classification model to improve the classification accuracy, and 
the lesion attention model using specific category labels also benefit the segmentation result. 
Luo [32] proposed a single-stage collaborative learning network for the first time, which 
simultaneously solves the two tasks of referring expression comprehension and referring 
expression segmentation. Multiple interactions between the two task branches ensure that 
they can promote each other during the training process and improve speed and accuracy of 
real-time target detection. Wang [33] proposes a new cross-dataset collaborative learning 
segmentation network, which combines different datasets as a new input for training. It can 
learn the homogeneous representations and heterogeneous statistics of different datasets and 
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add accuracy of segmentation. 
This paper uses a collaborative learning method, chooses saliency detection similar to 

image segmentation as an auxiliary task, and builds a road scene semantic segmentation 
model based on collaborative learning. 

2.3 Homoscedastic Uncertainty 
In the field of artificial intelligence, the problem of uncertainty has always been the focus of 
academic study. Bayesian network can be utilized to represent the potential dependencies 
between variables and solve many uncertainty problems. It is excellent and convincing on 
revealing many types of probabilistic dependencies [34]. 

In the Bayesian model, epistemic uncertainty and aleatoric uncertainty can be modeled. 
Epistemic uncertainty is also called model uncertainty because it mainly reflects the 
uncertainty of model parameters, usually caused by ignorance of the collected training data. 
Because of insufficient training data, the model has a lower confidence in the data that has 
not been seen. If the amount of data is increased, this uncertainty can be reduced. Aleatoric 
uncertainty is the uncertainty caused by the inability of the training data to explain the 
information, and these uncertainties can only be explained by improving the accuracy of 
observing all explanatory variables [34].  

Specifically, Aleatoric uncertainty includes data-dependent or heteroscedastic uncertainty 
and task-dependent or homoscedastic uncertainty. The former depends on the input data and 
is predicted as the model output, and the latter is a constant that remains the same for the 
input data and varies from task to task. 

In the multi-task model of road image semantic segmentation, the uncertainty of tasks can 
capture the relative confidence between tasks, so as to learn the optimal weight of each task. 
Therefore, we use homoscedastic uncertainty to optimize the weights in multi-task learning. 

2.4 Saliency Detection 
Visual saliency refers to the extraction of salient areas in images by simulating human 

visual characteristics through algorithms. Saliency detection is used in fields such as 
computer vision, graphics, and robotics. 

The first visual saliency detection model is proposed by Itti et al., [36] based on gray 
contrast. Since then, saliency detection has received extensive attention from researchers. 
Traditional saliency detection algorithms mostly use hand-made features. In [37], a 
region-based saliency is proposed and it takes the sum of the product of the contrast value 
and the weight value of the target region and all other regions as the saliency of the region. 
Achanta et al., [38] proposed a method of frequency adjustment to calculate the saliency map. 
With the application of convolutional neural networks in vision tasks, saliency detection 
algorithms based on deep learning methods have been developed. In [39], two networks are 
employed for local and global information estimation to overcome inaccurate boundary 
detection and complex texture objects. Zhang et al., [40] proposed progressive attention 
guided recurrent network PAGR, which adds an attention mechanism on the basis of 
recursion and multi-resolution, thereby improving the saliency detection performance. Later, 
researchers discovered that saliency detection is related to category semantic information, 
and category semantic information and saliency detection can be combined to improve 
model accuracy. In [41], a collaborative saliency detection method is designed to combine 
high-level semantic information of the category with depth vision features. First, a group of 
images with the same semantic information of the same category were used for supervised 
training, and then saliency detection maps were derived based on high-level in-group 
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semantic information and depth vision features. Zhang et al., [42] proposed a collaborative 
aggregation and distribution network. First, the group semantic information between images 
is obtained, and then the group semantic information is adaptively assigned to different 
individuals and the collaborative saliency target prediction is performed through a decoder. 
In [43], the CoEGNet uses a collaborative attention network and a basic saliency detection 
network to extract the characterization and semantic features of the image at the same time, 
which improves the scalability and stability of the model. Inspired by the above views, the 
semantic segmentation model proposed in this paper also requires pixel-level semantic 
information, which has a strong correlation with saliency detection. 

3. Methodology 
Compared with single-task model, we introduce the saliency detection for collaborative 
learning. Through the encoder-decoder structure, feature sharing and collaborative learning 
are carried out in the encoding stage, thereby improving the complementarity of features. 
Then use decoders of different structures for the two tasks is used to generate unique 
segmentation results, and finally homoscedastic uncertainty is designed to learn the weight 
of the loss function automatically to improve network performance. 

3.1 Network Architecture 
In view of the problem of insufficient context information and loss of partial spatial 
information in road image segmentation, based on the idea of collaborative learning, we 
combined the saliency detection task, and the proposed road image semantic segmentation 
network is shown in Fig. 1.  
 

 
Fig. 1. Semantic segmentation network for road image based on collaborative learning. (A)The shared 
convolution layers between the segmentation and the saliency detection task. (B) The special layers of 

the segmentation task. (C) The special layers of the saliency detection task. (D)Joint loss function. 
 

The network is composed of four parts: task-sharing module, semantic segmentation- 
specific module, saliency detection-specific module and joint loss function module. Among 
them, the task sharing module is responsible for the extraction of road features. The shared 
information of two different tasks is extracted by sharing the convolutional layer, thereby 
improving the feature extraction ability of each task. The semantic segmentation-specific 
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module up-samples the extracted features through a decoding network, restores to the 
original image size, and obtains the segmentation map with class information. Compared to 
the semantic segmentation-specific module, the saliency detection-specific module has an 
additional branch for generating saliency feature maps. The joint loss function module is to 
model the importance of the two tasks and assign different weights through the uncertainty 
of the task, and finally obtains the total loss of the network. 

3.2 Task- Sharing Module 
The task-sharing module performs feature extraction through pooling layers and stacked 
convolutional layers, and the two tasks share features through a shared coding structure to 
strengthen the feature extraction capabilities, the structure is shown in Fig. 2. This module is 
designed as a network with powerful feature extraction capabilities, such as DenseNet [44], 
VGG [14], DeepLab [12], etc. We chose DeepLabV3+ [25] as the backbone network and 
made improvements. For the input image, this module first performs dimensionality 
reduction through an initial module while reducing the image resolution; then connect to the 
Resnet-101 network for down-sampling, where the last residual block uses a dilation 
convolution with an expansion rate of 2 instead of ordinary convolution to control the 
receptive field and extract richer feature information while ensuring the feature size remains 
unchanged. After down-sampling, the features of 1/16 size of the original image are obtained 
and sent to the DSC-ASPP module, which is improved from ASPP by replacing the parallel 
convolutional layers with parallel depth-separable convolutional layers. The information of 
different scales of the image is extracted while effectively reducing the number of 
parameters. Finally, the extracted multi-scale features are stitched together and the final 
extracted feature 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 is output after passing through a convolution layer. 

 
Fig. 2. Task- Sharing Module.From top to bottom: initial module, atrous-resnet, DSP-ASPP. 

3.3 Task-specific modules 
The semantic segmentation-specific module is essentially a decoder, as shown in Fig. 1(C), 
which generates semantic segmentation results through a series of up-sampling and 
convolution operations. First, the 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  is up-sampled 4 times, and the feature 𝑥𝑥𝑅𝑅1 
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obtained by the R1 module is channel-fused to obtain a 1/4-size feature, and then this feature 
is up-sampled 4 times to obtain the segmentation result 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 of the same size as the input 
image: 

𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑢𝑢𝑢𝑢4(𝑥𝑥𝑅𝑅1 + 𝑢𝑢𝑢𝑢4(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚))                                      (1) 
Where, 𝑢𝑢𝑢𝑢4(∙) denotes the feature map is up-sampled by a factor of 4 ,  𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 ∈

𝑹𝑹𝑐𝑐1× 1
16ℎ× 1

16𝑤𝑤,𝑥𝑥𝑅𝑅1 ∈ 𝑹𝑹
𝑐𝑐2×1

4ℎ×1
4𝑤𝑤𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑹𝑹𝑛𝑛×ℎ×𝑤𝑤, and n denotes the total number of classes, h 

and w respectively denote the height and width of the input image.  
The saliency detection-specific module consists of two parts, as shown in Fig. 1(B), For 

the feature 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚  output from the shared layer, the saliency feature map 𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓  and the 
segmentation map 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 are obtained through different operations. The specific operations 
are as follows: 

First, average the pixels of each class of feature 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 to obtain the weight that can 
characterize the importance of the feature, and then use the sigmoid function to normalize 
the weight to [0,1] to obtain the saliency feature map 𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓, which is defined as follows: 

𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓 = 𝛿𝛿�𝜗𝜗(𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚)�                                                        (2) 
Where, ϑ denotes the average value of each class of pixels, δ denotes the sigmoid 

function, 𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓 ∈ 𝑅𝑅𝑛𝑛×1×1, and n denotes the total number of classes. 
Second, similar to the semantic segmentation-specific module, an up-sampling operation 

is performed for 𝑥𝑥𝑚𝑚𝑚𝑚𝑚𝑚 , then feature fusion is performed with 𝑥𝑥𝑅𝑅1, and finally the fused 
features are upsampled to obtain a saliency segmentation map 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 of the same size as the 
input image: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑢𝑢𝑢𝑢4�𝑥𝑥𝑅𝑅1 + 𝑢𝑢𝑢𝑢4(𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚)�                                         (3) 
Similarly, 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∈ 𝑹𝑹𝑛𝑛×ℎ×𝑤𝑤 . Finally, the saliency feature map and the saliency 

segmentation map are multiplied together to obtain the saliency detection map 𝑦𝑦𝑠𝑠𝑓𝑓𝑠𝑠： 

𝑦𝑦𝑠𝑠𝑓𝑓𝑠𝑠 = �𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓𝑚𝑚
𝑛𝑛

𝑚𝑚 =1

∙ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚                                                          (4) 

where 𝑠𝑠𝑓𝑓𝑠𝑠𝑓𝑓𝑚𝑚  denotes the feature weights of the i-th class, and 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚  denotes the i-th class 
of the segmentation results. 

3.4 Joint Loss Function 
In [34], an automatically learning method of loss weights is proposed. It exploited 
homoscedastic uncertainty to learn multiple targets at the same time, and derive a multi-task 
loss function applicable to regression and classification tasks. Inspired by the above ideas, 
we derive a joint loss function suitable for the model proposed in this paper.  

For semantic segmentation and saliency detection tasks, their essence belongs to 
classification tasks, and the final output is processed by the softmax function, so the 
probability model can be defined as follows: 

𝑢𝑢(𝑦𝑦|𝑓𝑓𝑤𝑤(𝑥𝑥),𝜎𝜎) = 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 �
1
𝜎𝜎2

𝑓𝑓𝑤𝑤(𝑥𝑥)�                                             (5) 

𝑓𝑓𝑤𝑤(𝑥𝑥) denotes the predicted result of the task with input x and weight w, y denotes the 
ground truth, and σ is a parameter learned by the neural network itself, which depends on the 
uncertainty of the task. Then the maximum likelihood estimation can be expressed as 
follows: 
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log𝑢𝑢(𝑦𝑦 = 𝑐𝑐|𝑓𝑓𝑤𝑤(𝑥𝑥),𝜎𝜎) =
1
𝜎𝜎2

𝑓𝑓𝑐𝑐𝑤𝑤(𝑥𝑥)− log� 𝑒𝑒
1
𝜎𝜎2𝑓𝑓

𝑤𝑤(𝑥𝑥)

𝑐𝑐′
                              (6) 

Where 𝑓𝑓𝑐𝑐𝑤𝑤(𝑥𝑥) denotes the c-th output of 𝑓𝑓𝑊𝑊(𝑥𝑥). 
For the proposed network in this paper, the outputs of the semantic segmentation and the 

saliency detection are 𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 and 𝑦𝑦𝑠𝑠𝑓𝑓𝑠𝑠, respectively, and the joint probability model can be 
defined as follows： 

𝑢𝑢 �𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑐𝑐1,𝑦𝑦𝑠𝑠𝑓𝑓𝑠𝑠 = 𝑐𝑐2�𝑓𝑓𝑤𝑤(𝑥𝑥)�& = 𝑢𝑢 �𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑐𝑐1�𝑓𝑓𝑤𝑤(𝑥𝑥)� ∙ 𝑢𝑢�𝑦𝑦𝑠𝑠𝑓𝑓𝑠𝑠 = 𝑐𝑐2�𝑓𝑓𝑤𝑤(𝑥𝑥)� 

                          = 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 � 1
𝜎𝜎12

𝑓𝑓𝑤𝑤(𝑥𝑥)� ∙ 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥

� 1
𝜎𝜎22

𝑓𝑓𝑤𝑤(𝑥𝑥)�                     (7) 

If we want to maximize the likelihood estimation, we must minimize the negative 
log-likelihood function, that is, the joint loss function L can be defined as: 

𝐿𝐿(𝑤𝑤,𝜎𝜎1,𝜎𝜎2) = −𝑙𝑙𝑠𝑠𝑙𝑙 𝑢𝑢(𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑐𝑐1,𝑦𝑦𝑠𝑠𝑓𝑓𝑠𝑠 = 𝑐𝑐2|𝑓𝑓𝑊𝑊(𝑥𝑥)

= −𝑙𝑙𝑠𝑠𝑙𝑙 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(
1
𝜎𝜎12

𝑓𝑓𝑤𝑤(𝑥𝑥) ∙ 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(
1
𝜎𝜎22

𝑓𝑓𝑤𝑤(𝑥𝑥))

= −𝑙𝑙𝑠𝑠𝑙𝑙 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(
1
𝜎𝜎12

𝑓𝑓𝑤𝑤(𝑥𝑥)) − 𝑙𝑙𝑠𝑠𝑙𝑙 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(
1
𝜎𝜎22

𝑓𝑓𝑤𝑤(𝑥𝑥))

= −
1
𝜎𝜎12

𝑓𝑓𝑐𝑐1
𝑤𝑤(𝑥𝑥) − 𝑙𝑙𝑠𝑠𝑙𝑙� 𝑒𝑒𝑥𝑥𝑢𝑢(

1
𝜎𝜎12

𝑓𝑓𝑐𝑐′𝑤𝑤(𝑥𝑥))
𝑐𝑐′

−
1
𝜎𝜎22

𝑓𝑓𝑐𝑐2
𝑤𝑤(𝑥𝑥)

+ 𝑙𝑙𝑠𝑠𝑙𝑙� 𝑒𝑒𝑥𝑥𝑢𝑢(
1
𝜎𝜎22

𝑓𝑓𝑐𝑐′′𝑤𝑤(𝑥𝑥))
𝑐𝑐′′

=
1
𝜎𝜎12

𝐿𝐿1(𝑊𝑊) +
1
𝜎𝜎22

𝐿𝐿2(𝑊𝑊)

+ 𝑙𝑙𝑠𝑠𝑙𝑙
∑ 𝑒𝑒𝑥𝑥𝑢𝑢( 1

𝜎𝜎12
𝑓𝑓𝑐𝑐′𝑤𝑤(𝑥𝑥))𝑐𝑐′

∑ 𝑒𝑒𝑥𝑥𝑢𝑢(𝑓𝑓𝑐𝑐′𝑤𝑤(𝑥𝑥))𝑐𝑐′

1
𝜎𝜎12

+ 𝑙𝑙𝑠𝑠𝑙𝑙
∑ 𝑒𝑒𝑥𝑥𝑢𝑢( 1

𝜎𝜎22
𝑓𝑓𝑐𝑐′′𝑤𝑤(𝑥𝑥))𝑐𝑐′′

∑ 𝑒𝑒𝑥𝑥𝑢𝑢(𝑓𝑓𝑐𝑐′′𝑤𝑤(𝑥𝑥))𝑐𝑐′′

1
𝜎𝜎22

 

≈
1
𝜎𝜎12

𝐿𝐿1(𝑊𝑊) +
1
𝜎𝜎22

𝐿𝐿2(𝑊𝑊) + 𝑙𝑙𝑠𝑠𝑙𝑙 𝜎𝜎1 + 𝑙𝑙𝑠𝑠𝑙𝑙 𝜎𝜎2                           (8) 

where 𝐿𝐿1(𝑊𝑊) = − log 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥 �𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑤𝑤(𝑥𝑥)� is the cross entropy loss of semantic 
segmentation, while 𝐿𝐿2(𝑊𝑊) = − log 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥�𝑦𝑦𝑠𝑠𝑓𝑓𝑠𝑠 ,𝑓𝑓𝑤𝑤(𝑥𝑥)� is the cross entropy loss of 
saliency detection. The last step uses the following approximation: when 𝜎𝜎1 → 1 , 
1
𝜎𝜎12
∑ 𝑒𝑒𝑥𝑥𝑢𝑢 � 1

𝜎𝜎12
𝑓𝑓𝑐𝑐′
𝑤𝑤(𝑥𝑥)� ≈𝑐𝑐′ ∑ 𝑒𝑒𝑥𝑥𝑢𝑢 �𝑓𝑓𝑐𝑐′

𝑤𝑤(𝑥𝑥)�𝑐𝑐′

1
𝜎𝜎1
2
 . 

When σ increases, the task noise is relatively large, so the weight coefficient 
corresponding to the task will decrease. Compared with the previous direct loss weighting, 
the joint loss function can learn the relative weight of each task well. Experiments show that 
this method can improve the performance of the model well. 
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4. Experiments and Results 
In this section, we evaluate our method on two benchmark semantic segmentation datasets: 
the Cityscapes dataset [45] and the PASCAL VOC 2012 dataset [46]. And we use DUTS [47], 
ECSSD [48] as the saliency detection dataset for collaborative learning. In the following 
experiments, all ablation experiments were performed on the Cityscapes dataset.  

4.1 Datasets and Implementation Details 
The Cityscapes Dataset[45] This dataset consists of 5000 finely annotated images, 
specifically, it is divided into three parts: 2975 images as training set, 500 images as 
validation set and 1525 images as test set. At the same time, in this experiment, we used 19 
classes from this dataset for model training and evaluation. 
The PASCAL VOC 2012 dataset [46] It contains 20 classes, of which 1464 iamges are used 
as training sets, 1449 images are used for evaluation, and 1456 images are used for testing. It 
has been widely used in image classification, target detection, and image segmentation. 
Same as [12], we add 10582 images to the training set to expand the amount of training data 
to improve model performance. 
The DUTS dataset [47] It consists of the training set and the test set of the ImageNet DET 
total of 10553 images. At present, the DUTS dataset is the largest saliency detection 
benchmark with explicit training, including very challenging saliency detection scenarios, 
and all true labels are manually labeled.  
The ECSSD dataset [48] This dataset is extended from the Complex Scene Saliency Dataset 
(CSSD) [49] and contains 1000 images with complex scenes and their true labels, presenting 
the texture and structure common to real-world images.  
The sample images of the above datasets is shown in the Fig. 3. 
 

 
Fig. 3. The sample graph of the data set.The left side is the image and the right side is the ground 

truth.(a) Cityscapes. (b) PASCAL VOC 2012. (c) DUTS. (d) ECSSD. 
 

Implementation Details This experiment is based on the pytorch framework and is trained 
on an NVIDIA Quadro RTX 8000 GPU with 48GB of memory. We use Adam as the 
optimizer and use cross-entropy loss to optimize all models. Due to the imbalance between 
classes, we adopt the custom class weighting scheme proposed by [23]: 𝑤𝑤𝑐𝑐𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠 =
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1
𝑠𝑠𝑛𝑛(1.02+𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

. For the Cityscapes dataset, The size of the image is 1024*512, and trained 
with a batch size of 8, the PASCAL VOC 2012 dataset The size of the image is 256*256, and 
and trained with a batch size of 16.  

We use mean Intersection over Union (mIoU) as our performance metric, which is used to 
calculate the mean intersection ratio of two collections. In the segmentation task, these two 
collections are the predicted value and the true value respectively.  

4.2 Results on Cityscapes 
In this section, we will investigate the effectiveness of our proposed method. In the following 
experiment, we choose the DeepLabV3+ model structure and evaluate it on the Cityscapes 
dataset. 

4.2.1 Ablation study 
Ablation of DSC-ASPP: In order to reduce the complexity of the model and the amount of 
calculation, we use the depthwise separable convolution to replace the normal convolution in 
ASPP. We choose 1024*512 as the resolution of the image, and in Table 1 we have counted 
the number of parameters and computation required to process the resolution. The computing 
power is represented by the floating-point operations (FLOPs) required for forward 
propagation. Obviously, our method can effectively reduce the number of parameters and the 
computing power required for forward propagation without affecting the performance of the 
model.  

 
Table 1. Comparison on the basis of operations 

 DSC-ASPP GFLOPs Parameters mIoU (%) 
DeepLabv3+

（Resnet 101） 
 177.78 59.34M 75.52 

√ 152.13 46.81M(↓21%) 75.66 

 

Ablation of collaborative learning: Compared with the single-task semantic segmentation 
model, we propose a semantic segmentation model based on collaborative learning, which 
uses saliency detection as a cascade task to provide semantic segmentation with relevant 
information such as the spatial location of salient objects to improve the overall 
segmentation effect of the model. In order to verify the effectiveness of the model, we 
conducted experiments in accordance with Table 2.   

 
Table 2. Ablation study for collaborative learning (SSM denotes Semantic Segmentation Module, 

SDM denotes Saliency Detection Module) 
Method Backbone SSM SDM mIoU (%) 

DenseNet — 
√  65.90 

√ √ 69.53 

DeepLa

bv3+ 
ResNet101 

√  75.66 

√ √ 77.23 
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As shown in Table 2, collaborative learning significantly improves performance. Compared 
with the DenseNet network that only performs semantic segmentation, the collaborative 
learning network with the saliency detection module has the mIoU of 69.53%, an increase of 
3.63%. At the same time, for the DeepLabv3+ network we selected, by adding the saliency 
detection module, the mIoU increased by 1.57%. The results show that the collaborative 
learning framework combined with saliency detection brings significant benefits to road 
scene segmentation.  
Ablation of loss function: On the basis of the collaborative learning framework, we 
optimized the weight with the homoscedastic uncertainty, and the results are shown in Table 
3. Compared with manual adjustment of the loss weight, when using uniform weighting, the 
loss weight is average and consistent, and the performance of the model is increased. 
However, the manual assignment method shows poor performance. Because the optimal 
weight is uncertain, it needs to be tried continuously. There are thousands of possible 
combinations. This process requires a lot of time and resources. However, the performance 
of using the homoscedastic uncertainty is better, which is an increase of 3.28% compared 
with the semantic segmentation single task, and an increase of 1.71% compared with the 
using of uniform weights.  

 

Table 3. Ablation for loss function 

Loss 
Task Weight 

mIoU (%) 
Seg. Sal. 

Segmentation Only 1 0 75.66 

Unweighted sum of losses 0.5 0.5 77.23 

Manually adjusted weight 
0.8 0.2 71.34 

0.2 0.8 69.12 

Multi-task uncertainty weighting √ √ 78.94 

4.2.2 Compare with other methods 
Experiments were conducted to compare our proposed method with other methods with 
equal training parameters for all experiments, and we compare the performance of the 
proposed algorithm with existing algorithm on the Cityscapes validation set, the results are 
shown in Table 4. It can be seen that our method outperforms all of them in mIoU index. In 
addition, as shown in Table 5, we used different methods to calculate the IoU for each 
category. Although our method cannot guarantee the best segmentation results for each 
category, our proposed method performs best in most categories.  

 

Table 4. Comparison with some existing methods on the Cityscapes validation set. 
Method Backbone Mean IoU (%) 
DenseNet[44] — 65.90 
SqueezeNAS[55] — 68.02 
Edgenet[54] — 71.00 
Dilated ResNet[50]  ResNet101 73.15 
MaskFormer[52] ResNet101 74.63 
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DeepLabV3 [26] ResNet101 75.66 
VSANet [53] DeepLabV3+ 76.19 
Cgan-Net[54] ResNet34 76.80 
PSPNet[19] ResNet101 76.81 
RepVGG[56] — 77.15 
Our method ResNet101 78.94 

 
Table 5. Per-class results on the Cityscapes validation set. The numbers marked in yellow indicate the 

best results for each category. 
 

Model DenseNet Dilated 
ResNet 

Mask 
Former 

DeepLab 
V3+ PSPNet RepVGG  Ours 

Road 96.47 96.61 97.81 98.74 98.01 97.99 97.86 
Sidewalk 79.58 78.09 83.05 82.56 82.69 80.14 83.77 
Building 89.53 91.49 91.02 95.54 96.13 93.89 96.03 

Wall 48.67 48.93 46.54 56.88 57.03 57.98 58.47 
Fence 42.41 45.37 48.43 53.85 54.91 56.91 59.54 
Pole 49.08 54.41 61.83 57.66 59.22 61.29 65.23 

Traffic Light 26.57 65.04 67.72 58.91 66.91 67.12 68.03 
Traffic Sign 61.65 71.09 75.14 70.93 73.24 72.41 74.12 
Vegetation 89.96 91.88 91.51 90.19 91.09 91.76 92.02 

Terrain 52.38 58.00 61.05 59.46 60.31 62.34 63.21 
Sky 92.15 95.09 93.71 95.67 95.86 96.23 97.39 

Person 69.62 78.80 79.25 85.45 80.86 85.24 87.38 
Rider 48.53 58.26 59.53 56.32 57.91 54.32 58.23 
Car 93.83 92.91 94.43 97.98 96.14 95.37 97.46 

Truck 56.87 76.95 75.46 79.96 82.16 81.56 83.21 
Bus 73.36 86.05 86.40 93.24 93.19 92.84 94.51 

Train 62.06 70.55 69.91 66.45 67.98 68.43 70.81 
Motorcycle 47.21 56.79 59.15 63.95 64.85 66.94 69.91 

Bicycle 72.22 73.50 76.03 83.42 80.92 83.24 84.67 
mIoU 64.90 73.15 74.63 75.66 76.81 77.15 78.94 

 
For better comparison, we also counted the average accuracy ofadvanced models. As shown 
in Fig. 4, it can be seen that the accuracy of the proposed method has improved compared 
with other networks. We performed a visual comparison between different models in Fig. 5, 
and it can be seen from sensory intuition that our model can obtain a better segmentation 
effect. 
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Fig. 4. the average accuracy of different models 

 

 
Fig. 5. Visual comparison on Cityscapes Dataset. (a) Image. (b) Ground Truth. (c) DenseNet. (d) 

Dilated ResNet. (e) MaskFormer. (f) DeepLabV3+ (g) PSPNet. (h) RepVGG. (i) Ours. 
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4.3 Results on PASCAL VOC 2012 
We conducted experiments on another representative PASCAL VOC 2012 dataset, and 

verify the effectiveness of the model through the segmentation effect of the model on 
different datasets. As shown in Table 6, our proposed method also performed well on 
PASCAL VOC 2012. We achieved an mIoU of 60.90%, which is 10.76% better than 
DenseNet. In addition, we perform a visual comparison of different methods in Fig. 6.  

 

 
Fig. 6. Visual comparison on PASCAL VOC 2012 validation Dataset. (a) Image. (b) Ground Truth. 

(c)DenseNet. (d) DeepLabV3+. (e) RepVGG. (f) Ours. 
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Table 6. Comparison with some existing methods on PASCAL VOC 2012 validation set. 
Method Backbone mIoU (%) 

DenseNet  — 50.14 

DeepLab V1  ResNet18 56.76 

Dilated ResNet  ResNet101 57.66 

DeepLabV3+  ResNet101 59.23 

RepVGG  — 60.18 

Our method ResNet101 60.90 

5. Conclusion 
In this paper, combined with the saliency detection algorithm, a road image semantic 

segmentation algorithm based on collaborative learning is proposed. Specifically, we use 
deep separable convolution in the ASPP module to reduce the computational effort and 
number of parameters. In addition, the saliency detection module provides relative spatial 
information for semantic segmentation and improve the ability of the model to learn features. 
Experiments on the Cityscapes dataset show that the improved algorithm improves the mIoU 
in most categories to varying degrees and can better capture small-scale targets and segment 
object boundary regions. In addition, it has also achieved outstanding performance on the 
PASCAL VOC 2012 dataset. 
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