• Title/Summary/Keyword: Riverine wetland

Search Result 41, Processing Time 0.025 seconds

Sedimentary Environmental Change and the Formation Age of the Damyang Wetland, Southwestern Korea (한국 남서부 담양습지의 퇴적환경 변화와 형성시기 연구)

  • Shin, Seungwon;Kim, Jin-Cheol;Yi, Sangheon;Lee, Jin-Young;Choi, Taejin;Kim, Jong-Sun;Roh, Yul;Huh, Min;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.39-54
    • /
    • 2021
  • Damyang Wetland, a riverine wetland, has been designated as the first wetland protection area in South Korea and is a candidate area for the Mudeungsan Area UNESCO Global Geopark. The Damyang Wetland area is the upstream part of the Yeongsan River and is now a relatively wide plain. To reconstruct the sedimentary environment around the Damyang Wetland, core samples were obtained, and sedimentary facies analysis, AMS and OSL age dataings, grain size, and geochemical analyses were carried out. In addition, comprehensive sedimentary environment changes were reconstructed using previous core data obtained from this wetland area. In the Yeongsan River upstream area, where the Damyang Wetland is located, fluvial terrace deposits formed during the late Pleistocene are distributed in an area relatively far from the river. As a gravel layer is widely distributed throughout the plains, Holocene sediments were likely deposited in a braided river environment when the sea level stabilized after the middle Holocene. Then, as the sedimentary environment changed from a braided river to a meandering river, the influx of sand-dominated sediments increased, and a floodplain environment was formed around the river. In addition, based on the pollen data, it is inferred that the climate was warm and humid around 6,000 years ago, with wetland deposits forming afterward. The the trench survey results of the river area around the Damyang Wetland show that a well-rounded gravel layer occurs in the lower part, covered by the sand layer. The Damyang Wetland was likely formed after the construction of Damyang Lake in the 1970s, as muddy sediments were deposited on the sand layer.

Distributional Patterns and the Evaluation of Hydrophytic Plants of Urban Wetlands in Seongnam City, Gyunggi-do Province, Korea (경기도 성남시 도시지역 습지의 유형 분포 및 습지식물의 특성 평가)

  • Chun, Seung-Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.2
    • /
    • pp.159-172
    • /
    • 2008
  • This study was carried out to obtain ecological information necessary for a conservation plan based on the distributional patterns, wetland types, and hydrophytic characteristics of urban wetlands in Seongnam City, Kyunggi Province where representing the various patterns of land use made by rapid urbanization since 1970s. Total 162 sites of four wetland types were identified as urban wetlands during the first survey. The sites were classified into 55 forested swamps, 4 riverine wetlands, 62 abandoned paddy fields, 37 small ponds, and 4 reservoirs, etc. The second survey targeted 107 sites which were identified as good wetlands. It showed that 42 sites(about 39%) were already degraded due to drainage, landfill, and crop cultivation at 6 months intervals. Both hydrologic conditions and hydrophytic characteristics of 27 good wetlands help maintain current ecological status, but most wetlands have been degraded by artificial impacts. Among 184 species identified, only 75 species(about 40.7%) were hydrophytes. Prevalence Index of hydrophyte based on three categories of OBL(obligatory wetland plant), FAC(facultitative plant), UPL(obligatory upland plant) was 3.7, indicating that vegetation data alone is inadequate to designate as wetlands. This study revealed that as critical habitats for wildlife they playa vital role in ecotone between both terrestrial and aquatic ecosystem with its proper distributional pattern in spite of their small areas compared to the entire geographic region of the City.

Changes of River Morphology in the Mid-lower Part of Nakdong River Basin after the 4 Large River Project, South Korea (4대강 사업 후 낙동강 중·하류의 하중도와 제외지 지형변화)

  • Im, Ran-Young;Kim, Ji Yoon;Choi, Jong-Yun;Do, Yuno;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.188-194
    • /
    • 2015
  • River channel dredging and riparian development have been influenced morphology and quantity of natural river habitat. We compared distribution of riverside land and alluvial island in the Nakdong River with field survey and remote sensing analysis after the 4 Large River Project in South Korea. We digitized geomorphological elements, includes main channel, riverside land, and alluvial island by using georeferenced aerial photos taken in pre-dredging (2008) and post-dredging (2012) periods. Field survey was followed in 2012 for a ground truth of digitized boundaries and identification of newly constructed wetland types such as pond, channel, branch, and riverine type. We found that during the dredging period, riverside land and alluvial island were lost by 20.2% and 72.7%, respectively. Modification rate of riverside land was higher in the section of river kilometer 50~90, 140~180, and 210~270. Alluvial island had higher change rate in the section of river kilometer 50~70, 190~210, and 270~310. Average change rate for the riverside land and alluvial island was $-1.02{\pm}0.14km^2{\cdot}10km^{-1}$ and $-0.05{\pm}0.05km^2{\cdot}10km^{-1}$, respectively. Channel shaped wetlands (72.5%) constituted large portion of newly constructed wetlands.

Relationship between Rainfall and Zooplankton Community Dynamics in a Riverine Wetland Ecosystem (Upo) (강 배후 습지생태계(우포)에서 강우량과 동물플랑크톤 군집 동태)

  • Kim, Hyun-Woo;Choi, Jong-Yun;La, Geung-Hwan;Jeong, Kwang-Seuk;Jo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.129-135
    • /
    • 2010
  • The relationship between rainfall variable and zooplankton dynamics was studied in the Upo wetland, an ecosystem of international importance. Water sampling was conducted on biweekly basis from January 2002 to December 2007 in the study site. The annual average of total rainfall was 1,324 mm during the study period. Total rainfall amount in 2003 (1,766 mm) was unusually high, while total rainfall amount in 2005 (975 mm) was exceptionally lower than the average. Most of basic limnological parameters (water temperature, dissolved oxygen, pH, conductivity and turbidity) in the study site were greatly influenced by the flooding events and rainfall amounts in summer. There were statistically significance between seasonal and inter-annual differences in zooplankton abundance and the total rainfall amount (ANOVA, P<0.05). Zooplankton abundance was high in summer (mean${\pm}$s.d.: $1,594{\pm}1,598\;Ind.\;L^{-1}$) and low in winter ($246{\pm}234\;Ind.\;L^{-1}$. The 47% of annual total zooplankton abundance in the study site were observed in summer. The seasonal pattern of rotifers was similar to that of total zooplankton. This reflected the fact that rotifers strongly dominated and occupied ca. 65% the total zooplankton abundance (annual mean: $398{\pm}1,139\;Ind.\;L^{-1}$, n=149), followed by cladocerans ($65{\pm}140\;Ind.\;L^{-1}$) and copepods ($58{\pm}84\;L^{-1}$). Planktonic rotifers such as Keratella cochlearis, Polyarthra spp. and Brachionus calyciflorus were dominant from winter to spring and attached rotifers such as Lecane spp., Monostyla spp. and Trichocerca spp., observed commonly from spring to fall. Among the environmental variables considered, rainfall in summer seemed to play the most important role in determining characteristics of zooplankton community dynamics in the Upo wetland.

Determining the Locations of Washland Candidates in the Four Major River Basins Using Spatial Analysis and Site Evaluation (공간분석 및 현장조사 평가 기법을 활용한 4대강 강변저류지 조성 후보지 선정)

  • Jeong, Kwang-Seuk;Shin, Hae-Su;Jung, Ju-Chul;Kim, Ik-Jae;Choi, Jong-Yun;Jung, In-Chul;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.44-54
    • /
    • 2010
  • In this study, a comprehensive exploration and evaluation of washland candidate locations by means of field monitoring as well as spatial analysis in six major river system (Han, Nakdong, Nam, Geum, Youngsan, and Seomjin Rivers). Washland(in other words, river detention basin) is an artificial wetland system which is connected to streams or rivers likely to riverine wetlands. Major purpose of washland creation is to control floodings, water supply and purification, providence of eco-cultural space to human and natural populations. Characteristics and functions of riverine wetlands can be expected as well, thus it is believed to be an efficient multi-purpose water body that is artificially created, in terms of hydrology and ecology. Geographical information and field monitoring results for the washland candidate locations were evaluated in 2009, with respect to optimal location exploration, ecosystem connectivity and educational-cultural circumstances. A total of $269\;km^2$ washland candidate locations were found from spatial analysis (main channel of Rivers South Han, 71.5; Nakdong 54.1; Nam, 2.3; Geum, 79.0; Youngsan 46.4; Seomjin 15.7), and they tended to be distributed in mid- to lower part of the rivers to which tributaries are confluent. Field monitoring at 106 sites revealed that some sites located in the Rivers Nam and Geum is appropriate for restoration or artificial creation as riverine wetlands. Several sites in the Nakdong and Seomjin Rivers were close to riverine wetlands (e.g., Upo), habitats of endangered species (e.g., otters), or adjacent to educational facility (e.g., museums) or cultural heritages (e.g., temples). Those sites can be utilized in hydrological, ecological, educational, and cultural ways when evidence of detailed hydrological evaluation is provided. In conclusion, determination of washland locations in the major river basins has to consider habitat expansion as well as hydrological function (i.e. flood control) basically, and further utility (e.g. educational function) will increase the values of washland establishment.

The Study on the Distribution and Inhabiting Status of Nutria (Myocastor coypus) in Korea (뉴트리아 (Myocastor coypus)의 국내 분포 및 서식 현황에 관한 연구)

  • Lee, Do-Hun;Kil, Ji-Hyon;Kim, Dong-Eon
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.3
    • /
    • pp.316-326
    • /
    • 2013
  • This study has researched the national expansion, dispersion of nutria and investigated its inhabitation status for the past 3 years. The report has shown that the number of nutria habitat, reported to be distributed in 9 cities or districts in 2010, has been increased to 13 in 2012. In the research of 629 nutria habitats, 95.9% of habitat traces were found in Busan-Kyungnam area. From the research of relative density by location type for the 6 survey areas in these 5 areas above, it was shown 3.98(${\pm}2.56$)ind./100m in 2010, 2.90(${\pm}2.69$)ind./100m in 2011 and 1.39(${\pm}0.66$)ind./100m in 2012. From the research of relative density by habitat types, it was shown 3.48(${\pm}2.15$)ind./100m in palustrine wetland area, $1.01{\pm}(0.25)ind.$/100m in river area and $3.69{\pm}(2.83)ind.$/100m in riverine wetland area. It was shown that the annual average density in the areas has slightly been decreased for the past 3 years between 2010 and 2012. It also reported that the habitat density in the river area is a bit lower than that in the wetland area. Currently it can be determined that the nutria has fully adapted themselves to the various local environments of wetland, river, stream, and so on in Korea and the Relative density could be remarkably increased especially in the favorable condition like a wetland. As the ones living in the area with over-density could be spread out to other areas, the efficient management plan to control should be prepared considering ecological conditions.

Physical and Chemical Characteristics of Sediments at Bam Islands in Seoul, Korea

  • Han, Mie-Hie;Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.29 no.4
    • /
    • pp.389-398
    • /
    • 2006
  • To examine sediment characteristics and find anthropogenic effects on riverine wetland ecosystems, paleoecological study was carried out at Bam islands in Seoul. Three hundred cm deep sediment cores were retrieved and dated with the lamination analysis method until 36 cm depth (1986). Sediments were divided into three zones based on the depth profiles of physico-chemical variables: below 160 cm depth (before 1968), between 160 and 40cm depths and above 40cm depth (after 1986). Physico-chemical characteristics were very variable between 160 and 40cm depths and this indicates unstable sedimentation environment. Even though heavy metal concentrations were relatively low, Cd and As contents have increased continuously. Dry mass accumulation rates during $1968{\sim}1986\;and\;1987{\sim}2003$ were 140 and $21\;kg\;m^{-2}\;yr^{-1}$, respectively. This was related to flooding intensity and duration. Bulk density, water content, loss on ignition, N, C, C/N ratio were very similar to other river delta but Ca, Na and K contents were 2 to 4 times higher than others. Heavy metal contents except Pb were lower or similar to those in other studied marshes in Korea. Heavy metal and Mg contents were correlated with each other and this suggests that the source of heavy metals be parent rock. From $^{13}C$ dating dates of organic materials in sediment, it is suggested that organic matter originated from the watershed and flooding intensity in the watershed might be responsible for the source of sediments. This study provides reference data for the comparison of sediment characteristics at islands in river and for the management of Bam islands.

The Excavation and Making Storytelling of Cultural Landforms around Shincheon (stream), Guemho River in Daegu (대구 신천과 금호강 일대의 문화지형 발굴과 스토리텔링 구성)

  • JEON, Young-Gweon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.3
    • /
    • pp.17-30
    • /
    • 2010
  • This paper aims to excavate and make storytelling of cultural landforms around Shincheon, Geumho river in Daegu and then to build the strategy for making its application. The main results are as follows. 1) There are main cultural landforms such as Yongdubawi(龍頭岩, river cliff), river cliff, rock shelter(岩蔭), sheeting joint landform, river cave, tor, etc. around Shincheon. 2) there are main cultural landforms such as riverine wetland, ferry, point bar, river cliff, Hwadam(畵潭, pool), Donghwacheon(stream), Mutae(無怠), Chimsan(hill), Yeonamsan(hill), Sanghwadae(river cliff), etc. around Geumho river. 3) It is necessary to excavate and restore cultural landforms around Shincheon and Geumho river for protection, Also the valuable cultural landforms should be designated as cultural assets in order to prevent damage. 4) Considering from application of cultural landforms around Shincheon, natural observation site need to be designed for experiencing culture, history and ecological environment. However, in viewpoint of application of cultural landforms around Geumho river, it is much better to plan a few of Geumho river cultural landform trails for self-guided tour.

Site Selection Model for Wetland Restoration and Creation for the Circulation of Water in a Newly-built Community (신도시 물순환체계 구축을 위한 습지조성 입지선정에 관한 연구)

  • Choi, Hee-Sun;Kim, Kwi-Gon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.36 no.6
    • /
    • pp.43-54
    • /
    • 2009
  • This study attempted to develop a model for selecting sites for ecologically effective, multi-functional wetlands during the environmental and ecological planning stage, prior to land use Planning. This model was developed with an emphasis upon the creation of a water circulation system for a newly-created city, dispersing and retaining the run-off that is increased due to urbanization and securing spaces to create wetlands that can promote urban biodiversity. A series of Precesses for selecting sites for wetland restoration and creation - watershed analysis, selection of evaluation items, calculation of weights, reparation of thematic maps and synthesis - were incorporated into the model. Its potentials and limitations were examined by applying it to the recently-planned WiRae New Community Development Area, which is located in the Seoul metropolitan region. At the watershed analysis stage, the site was divided into 13 sub-catchment areas. Inflow to watersheds including the area was $3,020,765m^3$ Run-off before and after development is estimated as $1,901,969m^3$ and $1,970,735{\sim}2,039,502m^3$, respectively. The total storage capacity required in the development area amounts to $68,766{\sim}137,533m^3$. When thematic maps were overlapped during the selection stage for wetland sites, 13 sub-catchment areas were prioritized for wetland restoration and creation. The locations and areas for retaining run-off showed that various types of wetlands, including retaining wetlands (area wetlands), riverine wetlands (linear wetlands) and pond wetlands (point wetlands), can be created and that they can be systematically connected. By providing a basic framework for the water circulation system plan of an entire city, it may be used effectively in the space planning stage, such as planning an urban eco-network through integration with greet areas. In order to estimate reasonable run-off and create an adequate water circulation system however, a feedback process following land use planning is required. This study strived to promote urban changes in a positive direction while minimizing urban changes in negative forms.

Distribution Status of Paspalum distichum Community at the Nakdong-River Estuary (낙동강 하구언 일대의 물참새피군락 분포 현황)

  • Lim, Jeong-Cheol;Jeong, Hyun-Gi;Lee, Cheol-ho;Choi, Byoung-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.50 no.2
    • /
    • pp.195-206
    • /
    • 2017
  • We described a spatial distribution pattern and floral diversity on the Paspalum distichum community occurring at the ecological parks of Hwamyeong, Daejeo, Samnak, and Maekdo in the Nakdong river estuary. A total distribution area of P. distichum community was $303,462.6m^2$. Its largest area was found in Samnak eco-park ($185,910.1m^2$). The most richness of knotgrass patches in each ecological park was determined Maekdo eco-park (87). Cover class level-5 shows the largest area ($260,663.2m^2$). A total of 73 taxa (34 families, 55 genus, 65 species, and 8 varieties) were listed up on the P. distichum community. A welldeveloped population of knotgrass was found predominantly at sites linked into human impacts at the riverine floodplain, the stream courses flowing through the parks, and the man-made channels and wetlands. Finally we proposed an ecological management strategy for knotgrass population in the study area.