Relationship between Rainfall and Zooplankton Community Dynamics in a Riverine Wetland Ecosystem (Upo)

강 배후 습지생태계(우포)에서 강우량과 동물플랑크톤 군집 동태

  • Kim, Hyun-Woo (Department of Environmental Education, Sunchon National University) ;
  • Choi, Jong-Yun (Department of Biological Sciences, Pusan National University) ;
  • La, Geung-Hwan (Department of Environmental Education, Sunchon National University) ;
  • Jeong, Kwang-Seuk (Department of Biological Sciences, Pusan National University) ;
  • Jo, Gea-Jae (Department of Biological Sciences, Pusan National University)
  • 김현우 (순천대학교 사범대학 환경교육과) ;
  • 최종윤 (부산대학교 자연과학대학 생명과학과) ;
  • 라긍환 (순천대학교 사범대학 환경교육과) ;
  • 정광석 (부산대학교 자연과학대학 생명과학과) ;
  • 주기재 (부산대학교 자연과학대학 생명과학과)
  • Received : 2010.01.22
  • Accepted : 2010.03.02
  • Published : 2010.03.01

Abstract

The relationship between rainfall variable and zooplankton dynamics was studied in the Upo wetland, an ecosystem of international importance. Water sampling was conducted on biweekly basis from January 2002 to December 2007 in the study site. The annual average of total rainfall was 1,324 mm during the study period. Total rainfall amount in 2003 (1,766 mm) was unusually high, while total rainfall amount in 2005 (975 mm) was exceptionally lower than the average. Most of basic limnological parameters (water temperature, dissolved oxygen, pH, conductivity and turbidity) in the study site were greatly influenced by the flooding events and rainfall amounts in summer. There were statistically significance between seasonal and inter-annual differences in zooplankton abundance and the total rainfall amount (ANOVA, P<0.05). Zooplankton abundance was high in summer (mean${\pm}$s.d.: $1,594{\pm}1,598\;Ind.\;L^{-1}$) and low in winter ($246{\pm}234\;Ind.\;L^{-1}$. The 47% of annual total zooplankton abundance in the study site were observed in summer. The seasonal pattern of rotifers was similar to that of total zooplankton. This reflected the fact that rotifers strongly dominated and occupied ca. 65% the total zooplankton abundance (annual mean: $398{\pm}1,139\;Ind.\;L^{-1}$, n=149), followed by cladocerans ($65{\pm}140\;Ind.\;L^{-1}$) and copepods ($58{\pm}84\;L^{-1}$). Planktonic rotifers such as Keratella cochlearis, Polyarthra spp. and Brachionus calyciflorus were dominant from winter to spring and attached rotifers such as Lecane spp., Monostyla spp. and Trichocerca spp., observed commonly from spring to fall. Among the environmental variables considered, rainfall in summer seemed to play the most important role in determining characteristics of zooplankton community dynamics in the Upo wetland.

국제적 중요성을 가지는 우포 습지에서 강우량과 동물 플랑크톤 동태 간의 상호관계를 파악하였다. 현장 조사는 우포 습지 내 조사지점에서 2002년 1월부터 2007년 12월까지 격주 간격으로 수행되었다. 조사기간 동안 연평균 강우량은 1,324 mm 이였으며, 총 강우량은 2003 년에 1,766 mm로 가장 높았던 반면 2005년에는 975 mm로 낮게 나타났다. 육수학적 요인(수온, 용존산소, pH, 전기 전도도 그리고 탁도)은 여름의 강우량과 홍수에 의해 크게 영향을 받는 것으로 파악되었다. 동물플랑크톤 밀도와 총 강우량은 통계적으로 유의한 계절성과 연간변이성을 보였다 (ANOVA, P < 0.05). 동물플랑크톤 밀도는 여름에 높고(평균${\pm}$표준편차; $1,594{\pm}1,598\;Ind.\;L^{-1}$) 겨울에 낮았으며(평균${\pm}$표준편차;$246{\pm}234\;Ind.\;L^{-1}$), 조사지점의 총 동물플랑크톤 밀도 중 47%가 여름에 출현하였다. 윤충류의 계절적 변화는 전체 동물플랑크톤의 양상과 유사하였고 총 동물플랑크톤 밀도(연 평균: $398{\pm}1,139\;Ind.\;L^{-1}$, n=149)의 약 65%를 윤충류가 차지하였으며, 다음으로 지각류 ($65{\pm}140\;Ind.\;L^{-1}$가 및 요각류 ($58{\pm}84\;Ind.\;L^{-1}$) 순으로 나타났다. Keratella cochlearis, Polyarthra spp. 그리고 Brachionus calyciflorus와 같은 부유성 윤충류는 겨울부터 봄까지 우점하였고 Lecane spp., Monostyla spp. 그리고 Trichocerca spp.와 같은 부착성 윤충류는 주로 봄부터 가을에 걸쳐 출현하였다. 여러 환경요인 중여름의 강우량 변동이 우포 습지의 동물플랑크톤 군집 동태의 특성 결정에 중요한 역할을 하눈 것으로 사료된다.

Keywords

References

  1. 강호철, 주용규. 1999. 자연습지의 구조적 특성과 갈대(Phragmites japonica)의 적정 생육 수심. 한국정원학회지 17: 191-200.
  2. 김한순. 1993. 창녕군 일대의 자연늪 및 저수지에 대한 담수조류의 분류생태학적 연구, 경북대학교, 대구.
  3. 김현우, 이학영. 2007. 하구언 댐 유무에 따른 강 생태계에서의 동물플랑크톤 동태의 차이. 한국육수학회지 40(2): 273-284.
  4. 도윤호, 장민호, 김동균, 주기재. 2007. 우포늪 범람에 의한 먼지벌레류(딱정벌레목, 딱정벌레과)의 다양성과 종조성 변화. 한국육수학회지 40: 346-351.
  5. Adrian, R., R. Deneke, U. Mischke, R. Stellmacher and P. Lederer. 1995. A long-term study of the Heiligensee (1975-1992): evidence for effects of climate change on the dynamics of eutrophied lake ecosystems. Archiv fur Hydrobiologie 133: 315-337.
  6. Allan, J.D. and M.M. Castillo. 2007. Stream Ecology. Springer, Dordrecht.
  7. Baek, S.Y. 1998. Ecological studies on the Upo Wetland. M.S. Thesis. Chung-Ang Univ.
  8. Bayly, I.A.E. 1992. The Non-marine Centropagidae (Copepoda: Calanoida) of the World. Guides to the Identification of the Microinvertebrates of the Continebtal Waters of the World No.2. SPB Academic Publishing, The Hague.
  9. Burks, R.L., E. Jeppesen and D.M. Lodge. 2000. Chemicals from macrophytes and fishes suppress Daphnia growth and alter life history traits. Oikos 88: 139-147. https://doi.org/10.1034/j.1600-0706.2000.880116.x
  10. Chang, K.-H., H.-W. Kim, G.-H. La, K.-S. Jeong and G.-J. Joo. 2004. Prey preference of juvenile fish based on the laboratory experiments and its impact on zooplankton community of the Nakdong River. Korean Journal of Limnology 37: 130-136.
  11. Chang, K.-H., S.-H. Choi, H.-W. Kim, K. Ha and G.-J. Joo. 1998. Seasonal changes od the zooplankton community in the Woopo Wetland. Korean Journal of Limnology 31(4): 258-265.
  12. Einsle, U. 1993. Crustacea, Copepoda, Calanoida and Cyclopoida. Susswasserfauna von Mitteleuropa, Vol. 8, Part 4-1. J. Fisher, Stuttgart.
  13. Joo, G.-J. 1990. Limnological studies of oxbow lakes in the southeastern United States: morphometry, physico-chemical characteristics and patterns of primary productivity. Univ. of Alabama Ph. D. Dissertation.
  14. Joo, G.-J. and D.A. Francko. 1995. Limnological characterization of the tristate oxbow wetland (Ohio, Indiana). The Ohio Journal of Science 95: 316-320.
  15. Koste, W. 1978. Rotatoria. Die radertiere mitteleuropas. Uberordnung Monogononta: ein bestimmungswerk(German edition). Gebruder Borntraeger, Stuttgart.
  16. Koste, W. and R.J. Shiel. 1987. Rotifera from Australian inland waters II. Epiphanidae and Brachionidae (Rotifera: Monogononta). Invertebrate Taxonomy 1: 949-1021. https://doi.org/10.1071/IT9870949
  17. Lau, S.S.S. and S.N. Lane. 2002. Nutrient and grazing factors in relation to phytoplankton level in a eutrophic shallow lake: the effect of low macrophyte abundance. Water Research 36: 3593-3601. https://doi.org/10.1016/S0043-1354(02)00059-3
  18. Maier, G. 1996. Copepod communities in lakes of varying trophic degree. Archiv fur Hydrobiologie 136: 455-465.
  19. Mitsch, W.J. and J.G. Grosselink. 2000. Wetlands. Elsevier Science, New York.
  20. Muzzaffar, S.B. and F.A. Ahmed. 2007. The effects of the flood cycle on the diversity and composition of the phytoplankton community of seasonally flooded Ramsar wetland in Bangladesh. Wetlands Ecology and Management 15: 81-93. https://doi.org/10.1007/s11273-006-9014-6
  21. Pielou, E.C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13: 131-144. https://doi.org/10.1016/0022-5193(66)90013-0
  22. Smirnov, N.N. and B.V. Timms. 1983. A revision of the Australian Cladocera (Crustacea). Record of the Ausralian Museum Supplement 1: 1-132. https://doi.org/10.3853/j.0812-7387.1.1983.103
  23. Straile, D. 2000. Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia 122: 44-50. https://doi.org/10.1007/PL00008834
  24. Uhm, S.H. and S.J. Hwang. 2006. Zooplankton grazing on bacteria and factors affecting bacterial C-flux in lake Paldang ecosystem. Korean Journal of Limnology 39(4): 424-434.
  25. Whitaker, V. and B. Matvienko. 1998. The denitrification potential and hydrological conditions in the wetlands of the Lobo resevoir. Internationale Vereinigung fur Theoretische und Angewandte Limnologie 26: 1377-1380.