• Title/Summary/Keyword: River-reservoir

Search Result 654, Processing Time 0.034 seconds

Evaluating Effect of Density Flow from Upstream on Vertical Distribution of Water Quality at the Paldang Reservoir (팔당호 수질의 연직분포에 대한 밀도류 영향 평가)

  • Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.6
    • /
    • pp.557-566
    • /
    • 2019
  • Paldang is a river reservoir in the Midwest of Korea, which is a drinking water source for the metropolitan area. Since the Paldang Reservoir is shallow, and has a short hydraulic residence time, its water quality is directly impacted by two incoming rivers, the north Han River (NHR) and the south Han River (SHR). The NHR has different seasonal patterns of water temperature from the SHR because the NHR is greatly impacted by the discharge water from upstream dams. The electrical conductivity (EC) and other material concentrations of the SHR are usually higher than those of the NHR because its basin is limestone-based. The difference in water temperature in the two rivers causes density flow, and the distribution of the EC within the reservoir can be an indicator for monitoring density flow. From the vertical gradient of the EC at the dam site, from spring to fall, it was confirmed that the SHR flowed into the upper layer, and the NHR flowed into the lower layer, and vice versa at other times. The relative difference (RD) of the EC between the upper layer and the lower layer at the dam site was used as an indicator for density flow. The RD of the EC showed a very significant correlation with the RD of total organic carbon (r = 0.70, p < 0.001) and the RD of total nitrogen (r = 0.58, p < 0.01). This relationship is based on the assumption that the difference in electrical conductivity and water quality between the SHR and the NHR is constant. However, in many cases this assumption is inconsistent. Thus, further study is needed on more suitable indicators to evaluate the impact of density flow on water quality.

Development of Downstream Turbid Water Management System Using SWAT and KoRiv1 Dynamic Water Quality Simulation Model (SWAT 및 KoRiv1 모형을 활용한 하류하천 탁도관리 시스템구축)

  • Noh, Joon-Woo;Kim, Jeong-Kon;Lee, Sang-Uk
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.1035-1043
    • /
    • 2009
  • High turbid water in the River has been one of the major concerns to the downstream residence. Especially in the Nakdong River basin severe turbid water problem occurred in year 2002 and 2003 due to the typhoon Rusa and Maemi consecutively. The main objective of this study is to develop turbid water management system in reservoir downstream of the Nakdong River combining physically based semi-distributed hydrologic simulation model SWAT with 1-dimensional dynamic water quality simulation model. SWAT model covers the area from the upstream of the Imha and Andong reservoir to the Gumi gage station for the purpose of estimating flow rates and suspended sediment of the tributaries. From year 1999 to 2007 runoff simulation for 8 years $R_{eff}$ and $R^2$ ranges $0.46{\sim}0.9$, $0.54{\sim}0.99$ respectively. Through the linkage of models, outputs of SWAT model such as suspended sediment and flow rates of the tributaries can be incorporated into the 1-dimensional dynamic water quality simulation model, KoRiv1 to support joint reservoir operation considering the turbidity released from Imha and Andong reservoir. The applicability of model simulation has been tested for year 2006 and compared with measured data.

Review on the Fish Fauna of the Imha-Dam Reservoir in the Nakdonggang River System, Korea (낙동강 수계 임하호의 어류상 고찰)

  • Jeong, Choong-Hoon;Han, Kyung-Nam
    • Korean Journal of Ichthyology
    • /
    • v.30 no.2
    • /
    • pp.119-124
    • /
    • 2018
  • Diversity of fish fauna and species list collected from the Imha-Dam Reservoir of the Nakdonggang River system were reviewed based on the published materials from 1992 to 2016. As a result of the present study, 46 freshwater fish species/subspecies belonging to 36 genera, 11 families, 4 orders were reported in the Imha-Dam Reservoir. Of them, Cyprinidae occupied 58.7% (27 species), Cobitidae 10.9% (5 spp.), Gobiidae 6.5% (3 spp.), and Siluridae, Centropomidae, Centrarchidae were 4.3% (2 spp.) in the number of species, respectively. The dominant species in the number of individuals was Erythroculter erythropterus (40.1%, 9,333 inds.), and the subdominant species was Opsariichthys uncirostris amurensis (9.8%, 2,281 inds.). Among 46 species/subspecies, 17 species (37.0%) were identified as endemic species to Korea. Three species were endangered fish species by the Ministry of Environment of Korea, five translocated species, and three exotic species were reported.

Organic Carbon Budget during Rainy and Dry Period in Paldang Reservoir (강우기 및 평수기의 팔당호 유기물 수지산정)

  • Lee, U-Hee;Jung, Dong-Il;Park, Hae-Kyung
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.3 s.108
    • /
    • pp.272-281
    • /
    • 2004
  • The Primary production and budget of organic carbon at rainy and dry period was surveyed to evaluate the contribution of primary production in Paldang Reservoir. Primary productivity of phytoplankton showed remarkable differences depending on sampling dates and sites, ranged from 110 to 2,701 mgC $m^{-2}day^{-1}$. In the rainy period of April and August when there had been frequent rainfall resulting short hydraulic retention time and low algal biomass in Paldang Reservoir, autochthonous organic carbon occupied very low ratio, farming approximately 7 percent of total inflow of organic carbon. However in June when it almost never rained and dominant algal species changed from diatoms to green algae and small flagellates, autochthonous organic carbon from primary productivity of phytoplankton formed 29 percent of total inflow of organic carbon.

A Study on the Determination for Stochastic Reservoir Capacity (추계학적 저수용량 결정에 관한 연구)

  • Choe, Han-Gyu;Choe, Yong-Park;Kim, Chi-Hong
    • Water for future
    • /
    • v.19 no.2
    • /
    • pp.149-156
    • /
    • 1986
  • The generated sequences of monthly flows were analyzed based on the range concept. With the optimum operation rule of the reservoirs as the one which maximizes the wateruse downstream the waterrelease from the reservoir was determined and with \ulcorner consideration to the mean inflows and the range of monthly flows the required reservoirs capacity was stochastically determind. It is suggested that the result obtained in this study would be applied to approximately estimate, in the stage of preliminary design, the required capacity of a reservoir in question with the limited information such as the mean monthly inflow and the period of reservoir operation. For the determination of a reservoir capacity Rippl's mass-curve method has been long used with the past river flow data assuming the same flow records will be repeated in the future. This study aims to find out a better method for determining the reservoir capacity by employing the analytical theory based on the stochastic process. For the present study the synthetic generation methods of Thomas-Fiering type was used to synthetically generate 50 years of monthly river inflows to three single-purpose reservoirs and three multi-purpose reservoirs.

  • PDF

Development of Operating Guidelines of a Multi-reservoir System Using an Artificial Neural Network Model (인공 신경망 모형을 활용한 저수지 군의 연계운영 기준 수립)

  • Na, Mi-Suk;Kim, Jae-Hee;Kim, Sheung-Kown
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.311-318
    • /
    • 2010
  • In the daily multi-reservoir operating problem, monthly storage targets can be used as principal operational guidelines. In this study, we tested the use of a simple back-propagation Artificial Neural Network (ANN) model to derive monthly storage guideline for daily Coordinated Multi-reservoir Operating Model (CoMOM) of the Han-River basin. This approach is based on the belief that the optimum solution of the daily CoMOM has a good performance, and the ANN model trained with the results of daily CoMOM would produce effective monthly operating guidelines. The optimum results of daily CoMOM is used as the training set for the back-propagation ANN model, which is designed to derive monthly reservoir storage targets in the basin. For the input patterns of the ANN model, we adopted the ratios of initial storage of each dam to the storage of Paldang dam, ratios of monthly expected inflow of each dam to the total inflow of the whole basin, ratios of monthly demand at each dam to the total demand of the whole basin, ratio of total storage of the whole basin to the active storage of Paldang dam, and the ratio of total inflow of the whole basin to the active storage of the whole basin. And the output pattern of ANN model is the optimal final storages that are generated by the daily CoMOM. Then, we analyzed the performance of the ANN model by using a real-time simulation procedure for the multi-reservoir system of the Han-river basin, assuming that historical inflows from October 1st, 2004 to June 30th, 2007 (except July, August, September) were occurred. The simulation results showed that by utilizing the monthly storage target provided by the ANN model, we could reduce the spillages, increase hydropower generation, and secure more water at the end of the planning horizon compared to the historical records.

3-Dimensional Hydrodynamic and Water Quality Change Simulation of Jingyang Reservoir Using EFDC-WASP (EFDC-WASP을 이용한 진양호의 3차원 수리.수질 변화 모의)

  • Jeong, Young-Won;Kim, Young-Do;Kim, Jeong-Kon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1079-1083
    • /
    • 2010
  • Due to summer rainfall is concentrated in the construction of the reservoir and the dam was inevitable. The character of these structures are different from the common rivers have been characterized. According to this problem, we need to adopt to this area with three dimensional model. Construction of dams for preservation of land, utilization of water resources, and exploitation of energy potential, which is a basic element of countries' development, is regarded as indispensable for peoples. In addtion, the development of the Nakdong River nutrient and pathogen Total Maximum Daily Loads (TMDL) required that the full range of pollutants, sources, and flow conditions, typical of heavily urbanized areas, be addressed for a single water body with 1-D simulation model (river) and 3-D simulation model (reservoir). The objective of this study is to simulate the applicability of reservoir with the coupling of 3-D hydrodynamic and water quality models to estimate water balance and pollutant loading in Namgang Dam(Jinyang reservoir).

  • PDF

Decision Suport System for Real-Time Reservoir Operation during Flood Period (홍수시 실시간 저수지 운영을 위한 의사결정 지원시스템)

  • Sim, Sun-Bo;Kim, Seon-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.431-439
    • /
    • 1997
  • This paper describes the development of a decision support system (DSS) for the real time reservoir operation that aims to maximize the flood control effect. In the decision support system, model base and real time data processing subsystem are included along with the graphical user interface(GUI) that is able to visualize the forecasted runoff hydrographs at the flood control points and reservoir water levels resulting from the model run as well as the current hydrologic status. The system was verified through the pseudo real time applications to the Taechong reservoir operation with the historical flood events of the Kum river basin occurred in July, 1987 and August, 1995, Decision making processes were performed using the developed system and the results were compared with the real operations at that time. The reservoir operation using the pseudo real time application of DSS were simulated by the flood runoff simulation model, that shows the reservoir operation by DSS were successful in flood control for the lower Kum River.

  • PDF

Application of Hydrological Monitoring System for Urban Flood Disaster Prevention (도시홍수방재를 위한 수문모니터링시스템의 적용)

  • Seo, Kyu-Woo;Na, Hyun-Woo;Kim, Nam-Gil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.1209-1213
    • /
    • 2005
  • It reflects well feature of slope that is characteristic of city river basin of Pusan local. Process various hydrological datas and basin details datas which is collected through basin basis data. weather satellite equipment(EMS-DEU) and automatic water level equipment(AWS-DEU) and use as basin input data of ILLUDAS model, SWMM model and HEC-HMS model In order to examine outflow feature of experiment basin and then use in reservoir design of experiment basin through calibration and verification about HEC-HMS model. Inserted design rainfall for 30 years that is design criteria of creek into HEC-HMS model and then calculated design floods according to change aspect of the impermeable rate. Capacity of reservoir was determined on the outflow mass curve. Designed imagination reservoir(volume $54,000m^3$) at last outlet upper stream of experiment basin, after designing reservoir. It could be confirmed that the peak flow was reduced resulting from examining outflow aspect. Designing reservoir must decrease outflow of urban areas.

  • PDF