• Title/Summary/Keyword: Risk management, Human monitoring

Search Result 58, Processing Time 0.024 seconds

Estimation of Human Carcinogenic Potency (HCP) of Carcinogens in Risk Assessment and Management. (위해성 평가 및 관리에 있어서 발암물질의 인체발암능력 평가)

  • 이병무;김대영;김세기;김근종
    • Environmental Mutagens and Carcinogens
    • /
    • v.19 no.1
    • /
    • pp.39-45
    • /
    • 1999
  • Human Carcinogenic Potency (HCP) can be estimated based on human daily exposure dose to carcinogen (Dh), body weight (Wh), 10% tumorigenic dose (TD10), and slope factor at TD10 (Q10) from 2-yr bioassay data. This approach is more relevant to humans generally exposed to low doses of carcinogens and can reduce more of extrapolation errors from high dose in animal experiments to low dose in humans than HERP (human exposure dose/rodent potency dose) proposed by Ames et al. (Science, 236, 271-280, 1987). TD50 and HERP have been routinely used to compare rodent carcinogenic potency and human carcinogenic potency, but those approaches have had limitations in extrapolation of high dose to low dose in humans. The advantages of HCP are to estimate human exposure dose (Dh) by human monitoring instead of environmental monitoring, to consider slope factor (Q10) which reflects the tendency of curve at low dose, and to use TD10 which represents much lower dose thant TD50 or HERP. HCP will be a useful parameter for the estimation of human carcinogenic potency in risk assessment and management of carcinogens.

Labor Vulnerability Assessment through Electroencephalogram Monitoring: a Bispectrum Time-frequency Analysis Approach

  • CHEN, Jiayu;Lin, Zhenghang
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.179-182
    • /
    • 2015
  • Detecting and assessing human-related risks is critical to improve the on-site safety condition and reduce the loss in lives, time and budget for construction industry. Recent research in neural science and psychology suggest inattentional blindness that caused by overload in working memory is the major cause of unexpected human related accidents. Due to the limitation of human mental workload, laborers are vulnerable to unexpected hazards while focusing on complicated and dangerous construction tasks. Therefore, detecting the risk perception abilities of workers could help to identify vulnerable individuals and reduce unexpected injuries. However, there are no available measurement approaches or devices capable of monitoring construction workers' mental conditions. The research proposed in this paper aims to develop such a measurement framework to evaluate hazards through monitoring electroencephalogram of labors. The research team developed a wearable safety monitoring helmet, which can collect the brain waves of users for analysis. A bispectrum approach has been developed in this paper to enrich the data source and improve accuracy.

  • PDF

Software Risk Management and Cyber Security for Development of Integrated System Remotely Monitoring and Controlling Ventilators (인공호흡기 원격 통합 모니터링 및 제어 시스템 개발을 위한 소프트웨어 위험관리 및 사이버보안)

  • Ji-Yong Chung;You Rim Kim;Wonseuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.99-108
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.

A Study on Countermeasure Strategy on Risk of Human Errors driven by Advanced and Automated Systems Through Consideration of Related Theories (현대의 고도화, 자동화된 시스템이 파생한 휴먼에러에 관한 이론적 고찰을 통한 리스크 대응전략 설정)

  • Shin, In Jae
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.86-92
    • /
    • 2014
  • This paper provides an integrated view on human and system interaction in advanced and automated systems, which adopting computerized multi-functional artifacts and complicated organizations, such as nuclear power plants, chemical plants, steel and semi-conduct manufacturing system. As current systems have advanced with various automated equipments but human operators from various organizations are involved in the systems, system safety still remains uncertain. Especially, a human operator plays an important role at the time of critical conditions that can lead to catastrophic accidents. The knowledge on human error helps a risk manager as well as a designer to create and control a more credible system. Several human error theories were reviewed and adopted for forming the integrated perspective: gulf of execution and evaluation; risk homeostasis; the ironies of automation; trust in automation; design affordance; distributed cognition; situation awareness; and plan delegation theory. The integrated perspective embraces human error theories within three levels of human-system interactions such as affordance level, psychological logic level and trust level. This paper argued that risk management process should dealt with human errors by providing (1) reasoning improvement; (2) support to situation awareness of operators; and (3) continuous monitoring on harmonization of human system interaction. This approach may help people to understand risk of human-system interaction failure characteristics and their countermeasures.

Aggregate Risk Assessment on Xylene and Ethylbenzene (자일렌과 에틸벤젠에 대한 매체통합위해성평가 연구)

  • Seo, Jung-Kwan;Kim, Taksoo;Kim, Pilje
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.163-171
    • /
    • 2013
  • The aggregate risk assessment on xylene and ethylbenzene was carried out according to the guidance established newly in 2010 with the purpose of providing information for risk management. In human exposure assessment, the results indicated that lower ages were exposed more and that, in the interior space at home, the highest level of human exposure occurred via inhalation. At outdoor spaces, exposures via inhalation and drinking were less than 1%. In human health risk characterization, xylene showed HI(Hazard Index) < 1 in all ages. When reasonable maximum exposure(RME) was applied, HI for young children was 0.64. The HI of ethylbenzene was also below 1(0.02~0.04) in all ages, indicating no potential risk. From this study, it is considered that xylene need to be continous monitoring with interest because this substance may be more sensitive on young age group. In additon, to reduce the uncertainty of the risk assessment, the korean exposure factors on young age group such as infant, children had to be established as soon as possible.

Reliability Evaluation for the Advanced Pressurized water Reactor 1400 (신형경수로 1400을 위한 신뢰성 평가)

  • 강영식
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.3
    • /
    • pp.125-134
    • /
    • 2001
  • The Advanced Pressurized rater Reactor 1400(APR1400) system is advanced of the successful Korean Nuclear Power Plants(KSNP) design which meets functional needs for safety enhancement reliability improvement, and control in the human-computer monitoring system. Therefore this paper describes the scoring model in order to justify the reliability and safety in APR 1400 under uncertainty. The structure of this paper consists of the human engineering, risk safety, quality function, safety organization management factors of the qualitative factors in chapter 2, and the expectation results of the normalized scoring model in chapter 3. Finally, the proposed reliability model have provided the technical flexibility not only for functional control fields but also for accidents protection systems in APR 1400 under uncertainty.

  • PDF

Analysis of Risk Factors for Patient Safety Management (환자안전 관리를 위한 위험요인 분석)

  • Ahn, Sung-Hee
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.12 no.3
    • /
    • pp.373-384
    • /
    • 2006
  • Purpose: This is a pilot study to identify patient safety risk factors and strategies for patient safety management perceived by nurses. Methods: Data were collected and analyzed with an open questionnaire from April to May 2005, targeted on 100 nurses working in two hospitals. The issues were 'what are risk factors for patients, nurses, and other medical practitioners? How do they prevent with the aftermath of risk factors, causes of incidents?' For data analysis, types and frequency of risk factors were worked out, using the Australian Incident Monitoring System Taxonomy. Results: The types of patient safety risk factor perceived by nurses were as follows ; therapeutic devices or equipment, infrastructure and services (29.5%), nosocomial infections (16.3%), clinical processes or procedures (15.4%), behavior, human performance, violence, aggression, security and safety (12.2%), therapeutic agents (9.7%), injuries and pressure ulcers (8.7%), logistics, organization, documentation, and infrastructure technology (5.6%). Strategies for patient safety included training of prevention of infection, education about safety management for patients and medical professionals, establishment of reporting system, culture of care, pre-elimination of risk factors, cooperative system among employees, and sharing information. Conclusion: These results will be used to provide evidences for patient safety management and educational program.

  • PDF

The Domestic Research Trend and the Road Map of Health Risk Assessment of the Air Quality in Korea (대기환경부문 건강위해평가의 국내 연구 동향과 발전방향)

  • Shin, Dong Chun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.5
    • /
    • pp.528-535
    • /
    • 2013
  • Air pollution in large cities is reduced through the environmental health policies, but due to increased population and automobile, some pollutants are still a problem. These air pollutants are known to cause asthma and respiratory diseases. According to an OECD report, the number of premature deaths will increase. Hazardous air pollutants should be managed through a systematic monitoring, risk assessment, and many studies are in progress. In order to manage hazardous air pollutants, transformation of policy for the protection of human health is required. management policy through the calculation of the excess number of deaths that occur from hazardous air pollutants for the public health is necessary. Korea has put a lot of efforts for air quality, but health risk assessment should be more considered.

Chemical Risk Factors for Children's Health and Research Strategy (어린이 건강관련 유해물질 연구방향)

  • Lee, Hyo-Min;Jung, Ki-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.3
    • /
    • pp.276-283
    • /
    • 2008
  • To provide the research strategy for protection of children's health from hazardous chemical, we reviewed the hazardous chemicals can be exposed through maternity, children's life style and living environment. Recently, diseases related with children's living condition were focused as asthma, atopy, childhood developmental disability, congenital malformations and obesity. Children can be exposed to hazardous chemicals through an ambient air, water, soil, food, toys and other factors such as floor dust. Also children's health was deeply related with a wrong life style and neglectful caring by a lack of knowledge and information of harmful ones at parents and child care center's nursers. According to the previous study, the chemical risk factor of children's health were identified as inorganic arsenic, bisphenol A, 2,4-D, dichlorvos, methylmercury, PCBs, pesticide, phthalates, PFOA/PFOS, vinyl chloride, et al. Domestic studies for identification of causality between children exposure to chemicals and resulted hazardous effects were not implemented. The confirmation of chemical risk factors through simultaneously performing toxicological analysis, human effect study, environmental/human monitoring, and risk assessment is needed for good risk management. And also, inter-agency collaboration and sharing information can support confirming scientific evidence and good decision making.

Summative Usability Assessment of Software for Ventilator Central Monitoring System (인공호흡기 중앙감시시스템 소프트웨어의 사용적합성 총괄평가)

  • Ji-Yong Chung;You Rim Kim;Wonseuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.363-376
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.The purpose of this study is to conduct a usability assessment to ensure that ergonomic design has been applied so that the ventilator central monitoring system can improve user satisfaction, efficiency, and safety. The rapid spread of COVID-19, which began in 2019, caused significant damage global medical system. In this situation, the need for a system to monitor multiple patients with ventilators was highlighted as a solution for various problems. Since medical device software is closely related to human life, ensuring their safety and satisfaction is important before their actual deployment in the field. In this study, a total of 21 participants consisting of respiratory staffs conducted usability test according to the use scenarios in the simulated use environment. Nine use scenarios were conducted to derive an average task success rate and opinions on user interface were collected through five-point Likert scale satisfaction evaluation and questionnaire. Participants conducted a total of nine use scenario tasks with an average success rate of 93% and five-point Likert scale satisfaction survey showed a high satisfaction result of 4.7 points on average. Users evaluated that the device would be useful for effectively managing multiple patients with ventilators. However, improvements are required for interfaces associated with task that do not exceed the threshold for task success rate. In addition, even medical devices with sufficient safety and efficiency cannot guarantee absolute safety, so it is suggested to continuously evaluate user feedback even after introducing them to the actual site.