• Title/Summary/Keyword: Rise Time

Search Result 2,224, Processing Time 0.032 seconds

Comparison of Measured Data and Theoretical Results for Potential Rise of Structure Using Electrolytic Tank Model (수조모델을 이용한 구조체의 전위상승에 대한 측정값과 계산값의 비교)

  • Gil, Hyoung-Jun;Kim, Dong-Woo;Choi, Chung-Seog;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.72-77
    • /
    • 2006
  • This paper presents a comparison of experimental value by electrolytic tank experimental apparatus and calculated value by CDEGS program for potential rise of structure. When a test current flowed through structure models, potential rise was measured and analyzed for types of structure using the electrolytic tank experimental apparatus in real time, and was computed by means of CDEGS program. The structure models were designed and fabricated with four types on a scale of one-one hundred sixty. When the experimental data were compared with the theoretical values, the similar profile was shown. Therefore, the confidence of measurement was obtained. Potential rise was the lowest value at electric cage type(structure model B). The distributions of potential rise are dependent on the resistivity and absorption percentage in concrete attached to structure.

Influence of Predominant Periods of Seismic Waves on a High-rise Building in SSI Dynamic Analyses with the Complete System Model (연속체 모델에 기초한 SSI 동적해석 시 지진파 탁월주기가 초고층 건물에 미치는 영향)

  • You, Kwangho;Kim, Juhyong;Kim, Seungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.5-14
    • /
    • 2019
  • Recently in Korea, researches on seismic analyses for high-rise buildings in a large city have been increasing because earthquakes have occurred. However, the ground conditions are not included in most of seismic researches and analyses on a high-rise building. Also the influence of the predominant period of a seismic wave is not considered in reality. Therefore, in this study, the influence of the predominant period of a seismic wave on the dynamic behavior of high-rise buildings was analyzed based on the complete system model which can consider the grounds. For this purpose, 2D dynamic analyses based on a linear time history analysis were performed using MIDAS GTS NX, a finite-element based program. Dynamic behavior was analyzed in terms of horizontal displacements, drift ratios, bending stresses, and building weak zones. As a result, in overall, the dynamic response of a high-rise building become bigger as the predominant period of a seismic wave become longer. It was also found that the predominant period had a greater influence than other parameters, ground conditions and peak ground acceleration.

Model reduction techniques for high-rise buildings and its reduced-order controller with an improved BT method

  • Chen, Chao-Jun;Teng, Jun;Li, Zuo-Hua;Wu, Qing-Gui;Lin, Bei-Chun
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.305-317
    • /
    • 2021
  • An AMD control system is usually built based on the original model of a target building. As a result, the fact leads a large calculation workload exists. Therefore, the orders of a structural model should be reduced appropriately. Among various model-reduction methods, a suitable reduced-order model is important to high-rise buildings. Meanwhile, a partial structural information is discarded directly in the model-reduction process, which leads to the accuracy reduction of its controller design. In this paper, an optimal technique is selected through comparing several common model-reduction methods. Then, considering the dynamic characteristics of a high-rise building, an improved balanced truncation (BT) method is proposed for establishing its reduced-order model. The abandoned structural information, including natural frequencies, damping ratios and modal information of the original model, is reconsidered. Based on the improved reduced-order model, a new reduced-order controller is designed by a regional pole-placement method. A high-rise building with an AMD system is regarded as an example, in which the energy distribution, the control effects and the control parameters are used as the indexes to analyze the performance of the improved reduced-order controller. To verify its effectiveness, the proposed methodology is also applied to a four-storey experimental frame. The results demonstrate that the new controller has a stable control performance and a relatively short calculation time, which provides good potential for structural vibration control of high-rise buildings.

A Study on the Core Characteristics of Irregular-Shaped High-rise Buildings (비정형 초고층건물의 코어 특성에 관한 연구)

  • Jang, In-Sun;Im, Ja-Eun;Park, Sang-Min
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.11
    • /
    • pp.13-24
    • /
    • 2019
  • The history of tall buildings begins in 1853with the development of elevators. After the Industrial Revolution of the 18th century, the development of high-rise buildings will be carried out in earnest as a means to efficiently use the limited land of cities. The development, which began around Chicago, extended over a long period of time to Asia, maximizing the high competition. However, in the 2000s, not only was it high due to the development of construction and digital technology, but it also became competitive in eco-friendly elements and unstructured forms. High-rise building plans that have gained elemental and morphological diversity are completed by the interrelationships of various plans. Among them, it is important that the core plan has a reasonable approach from the initial planning stage as the basis for the vertical copper plan linking vertically-intensive functions. The cores should be designed to be clear and adequately responsive to changes in the shape of the building. This study aims to provide designers with a reasonable understanding of core planning by identifying core characteristics of irregular high-rise. In particular, we want to analyze the shape of the ground layer core and the relationship between the area and components of the ground layer core. The analysis results are as follows, classified according to the type or use of the building. Of the atypical forms composed of double bending, the TAPER-Curve and TWIST forms are the most distributed, and the plane and core shapes of the ground floor are the most commonly used. Based on the analysis of the validity of the ground floor cores by shape of the cores, the most commonly used forms for core shapes in the planning of the atypical high-rise are square, circular and Oval, and the most efficient oval cores and relatively inefficient ones when planned.

Development and Application of Unit Table Form using Euro Form for High-rise Building Construction (초고층 건축공사를 위한 유로-유닛 테이블폼 공법 개발 및 적용에 관한 연구)

  • Yang, Sung-Woo;Cho, Hun-Hee;Kang, Kyung-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.2
    • /
    • pp.45-52
    • /
    • 2008
  • In today's construction, there has been an increase in the construction of high-rise buildings due to the need to maximize land usage. Framework affects not only the entire construction duration and cost, but also subsequency construction activities such as electrical, mechanical, and finishing works. Especially, proper formwork is a influential factor of productivity in the framwork of reinforced concrete construction. To that reason, a table form of system form is more frequently used than conventional form. However, an initial cost of the table form is high and a reused table form needs for workers to repair damaged table forms. Therefore, the goal of this study is to introduce euro-unit table form. The results from the application of euro-unit table form to high-rise residentia building construction are as follows : (1) The cost of producing table form reduced by 16%, and (2) The time of producing table form was slumped by 35%, and (3) The labor force needed for form work declined 21%.

Data Standardization of Construction Performance for Optimized Process Management in High-rise Curtain-wall Operations (초고층 커튼월 공정관리 최적화를 위한 건설성능 데이터 표준화)

  • Lee, Tae-Hee;Ko, Yong-Ho;Kim, Young-Suk;Han, Seung-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.283-284
    • /
    • 2012
  • High-rise building construction has been increasing for the recent years and the construction process has become more complicated. This suggests a need for precise planning based on reliable data to prevent cost overruns and delays. However, the process planning is implemented based mainly on the experience of engineers that can result in critical damage in cost and time. Accurate productivity estimation and unit cost analysis must be considered important matter to prevent such disaster. This study estimates productivity and unit cost of curtain wall operations in high-rise building construction by simulation techniques and statistical methodologies. This study suggests a decision making methodology for the site personnel that enables to compare various combinations of productivity and unit cost based on reliable data that has been collected in actual construction sites. It is expected that this study contributes to the following research of developing an optimized construction performance assembling model for the site personnel.

  • PDF

The Analysis of Ground Potential Rise for Shapes of Grounding Electrode Using Hemispherical Grounding Simulation System (반구형 접지모의시스템을 이용한 접지전극의 형상에 따른 대지전위상승의 분석)

  • Gil Hyoung-Jun;Choi Chung-Seog;Lee Bok-Hee
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.7
    • /
    • pp.319-325
    • /
    • 2005
  • In order to analyze ground potential rise of grounding system installed in buildings, the hemispherical grounding simulation system has been designed and fabricated as substantial and economical measures. Ground potential rise(GPR) has been measured and analyzed for shapes of grounding electrode using the system in real time. The system is apparatus to have a free reduced scale for conductor size and laying depth of a full scale grounding system and is constructed so that a shape of equipotential surface is nearly identified a free reduced scale with a real scale when a current flows through grounding electrode. The system was composed of a hemispherical water tank, AC Power supply, a movable potentiometer, and test grounding electrodes. The test grounding electrodes were fabricated through reducing grounding electrode installed in real buildings such as rod type, mesh grid type. When a mesh grid type was associated with a rod type, GPR was the lowest value. The proposed results would be applicable to evaluate GPR in the grounding systems. and the analytical data can be used 0 stabilize the electrical installations and prevent the electrical disasters.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

A Study on Scoring Resistance In Lubricated Sliding Contact (윤활 마찰면의 스코링 저항성에 관한 연구)

  • 김해원;홍재학;허준영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.2
    • /
    • pp.358-366
    • /
    • 1990
  • As a basic study to clarify the scoring resistance in lubricated sliding contact, the temperature rise on frictional surface was analyzed by theoretical method and the effects of various factors on the temperature rise were examined. On the basic of the results obtained theoretically, the practical equations to calculate the maximum average temperature of the contact surface were proposed which are applicable to sliding contact. Then, the effects of sliding velocity and oil temperature on the seizure behavior, and the relation between seizure and temperature rise were investigated. The following conclusions are deduced : The maximum average temperature rise and the other bulk temperature. The former is affected by the size of heat supply region and the sliding velocity, the latter is affected by heat transfer coefficient. Without regard to the operating condition such as sliding velocity, oil temperature and operating time at each load-step, the maximum average temperature just before seizure is nearly constant except in the region of lower velocity. Consequently, the maximum average temperature of the contact surface in boundary lubrication is a useful criterion to predict the scoring of sliding contact.

A Study on the Behavior of the Free Surface in a Moving Cup of Different Shape (이송되는 컵 형상에 따른 자유표면의 거동 특성에 관한 연구)

  • Kim, Yun-Sun;Hong, Tae-Hyub;Kim, Chang-Nyung
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1220-1225
    • /
    • 2009
  • A manipulator is operated for the motion of mechanical hands or arms. When a cup including liquid inside is shifted by a manipulator, it is important to know how a free surface of the liquid moves. In this study, non dimensional parameters have been found that affect the rise of the free surface in a cup moving with constant acceleration. The non-dimensional parameters are the dimensionless time, the ratio of inertia effect to viscous effect (the Reynolds number), aspect ratio of the liquid inside the cup and the acceleration ratio (the Froude number). Through this study, the height of the free surface rise in a cup has been predicted and the detailed velocities in the liquid have been examined. Generally, the maximum rise of the free surface is dependent on the Reynolds number and Froude number strongly, but on the aspect ratio weakly. However, the influence of the aspect ratio on the maximum rise of the free surface is not negligible in the range of 10 < Re < 100.

  • PDF