• 제목/요약/키워드: Ripple control

검색결과 823건 처리시간 0.02초

고해상도 듀티비 제어가 가능한 디지털 제어 방식의 CMOS 전압 모드 DC-DC 벅 변환기 설계 (Design of digitally controlled CMOS voltage mode DC-DC buck converter for high resolution duty ratio control)

  • 윤광섭;이종환
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1074-1080
    • /
    • 2020
  • 본 논문은 공정, 전압 및 온도에 둔감하며, 출력전압 상태에 따라 3가지 동작모드가 가능한 디지털 제어 벅 변환기를 제안한다. 기존 디지털 제어 방식의 벅 변환기는 A/D 변환기, 카운터 및 딜레이 라인 회로를 사용하여서 정확한 출력 전압을 제어하였다. 정확한 출력 전압 제어를 위해서는 카운터 및 딜레이 라인 비트 수를 증가시켜서 회로 복잡성 증가 문제점을 지니고 있다. 이러한 회로의 복잡성 문제를 해결하기 위해서 제안된 회로에서는 8비트 및 16 비트 양 방향 쉬프트 레지스터를 사용하고 최대 128비트 해상도까지 듀티비 제어가 가능한 벅 변환기를 제안한다. 제안하는 벅 변환기는 CMOS 180 나노 공정 1-poly 6-metal을 사용하여 설계 및 제작하였으며, 2.7V~3.6V의 입력 전압과 0.9~1.8V의 출력 전압을 생성하고, 리플전압은 30mV, 전력 효율은 최대 92.3%, 과도기 응답속도는 4us이다.

고정밀 체결토크 성능 너트런너 시스템 개발 (Development of High Precision Fastening torque performance Nut-runner System)

  • 김윤현;김솔
    • 한국산학기술학회논문지
    • /
    • 제20권4호
    • /
    • pp.35-42
    • /
    • 2019
  • 현재 자동차 산업과 함께 발전하고 있는 전자제품을 포함하는 전반적인 제조업 분야에서 초정밀 제어를 요하는 너트 체결기가 요구되고 있고 너트 체결시의 중요한 성능 요소는 체결력 부족에 의한 풀림과 과도한 체결에 의한 파손 및 강한 진동이나 외부 충격에 강건한 체결력 유지 등 조립 품질의 유지와 향상 및 제품 수명 보장을 위해 정확한 조임 토크, 각도 등이 요구된다. 현재 너트런너라는 제품명으로 판매되는 너트 체결기는 고토크 및 정밀토크제어, 정밀 각도제어 그리고 생산량 증대를 위한 고속운전 등의 특성들이 필요하며 고출력이 가능한 BLDC모터 및 너트체결기 전용의 정교한 토크제어에 필요한 고정밀 토크제어드라이버와 고속, 저속, 고응답의 정밀 속도 제어시스템의 개발이 요청되고 있으나 현재 고객이 요구하는 고정밀, 고토크 및 고속 작업특성을 만족시키지 못하고 있다. 따라서 본 논문에서는 정확한 체결 토크 및 고속 회전에서도 저진동 및 저소음을 구현할 수 있는 d축, q축의 좌표변환에 의한 벡터제어와 토크제어기반의 BLDC모터 가변속 제어와 너트런너의 제어 기술을 제안하고 여러 실험을 통해 성능 결과를 분석하여 제안한 제어가 너트런너 성능을 만족하는지를 확인 하였다. 또한 일단 운전 체결 방식(One Stage 운전 체결 방식)으로 패턴을 프로그램하여 10,000[rpm] 고속 운전 후 목표 토크로 정확히 체결됨을 확인하였으며 토크 리플에 의한 가체결 토크 검출의 문제점도 외란관측기을 사용하여 해결하였고 실험을 통해 검증하였다.

출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계 (Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function)

  • 송기남;한석붕
    • 한국전기전자재료학회논문지
    • /
    • 제23권8호
    • /
    • pp.593-600
    • /
    • 2010
  • In this paper, High brightness LED (light-emitting diodes) driver IC (integrated circuit) using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET (metal oxide semiconductor field effect transistor) from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. To confirm the functioning and characteristics of our proposed LED driver IC, we designed a buck converter. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses 1.0 ${\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre (Cadence) simulation.

High Performance PI Current Controller for a Switched Reluctance Motor

  • Ashoornejad, A.;Rashidi, A.;Saghaeian-nejad, S.M.;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권4호
    • /
    • pp.367-373
    • /
    • 2014
  • The most common current controller for the Switched Reluctance Motor (SRM) is the hysteresis controller. This method, however, suffers from such drawbacks as variable switching frequency, consequent audible noise and high current ripple. These disadvantages make this controlling method undesirable for many applications. The alternative solution is the PI controller. Since the fixed gain PI current controller can only be optimized for one operating point, and on the other hand, SR motor is highly nonlinear, PI controller gain should be adjusted according to incremental inductance. This paper presents a novel method for PI current controller gain adaptation which is simple and yields a good performance. The proposed controller has been implemented on a test bench using a eZdsp F28335 board. The performance of the current controller has been investigated in both simulation and experimental tests using a four-phase 8/6 4KW SRM drive system.

Comparative Analysis of Magnetic Slot Wedges Design for Increasing Performance of Railway Traction Motor

  • Liu, Huai-Cong;Cho, Sooyoung;Hong, Hyun-Seok;Joo, Kyoung-Jin;Ham, Sang-Hwan;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2411-2418
    • /
    • 2017
  • This study focuses on the effects of using open stator slots in an interior permanent magnet traction motor with a magnetic slot wedge design in order to increase the power density at its base speed. In addition, such a configuration reduces the torque ripple under field-weakening conditions. Five different wedge models were selected, each of which was evaluated using a finite element analysis (FEA). Based on the initial model, we designed magnetic slot wedges for maximum back-EMF and minimum cogging torque. In addition, the d-q axis inductance was slightly altered due to the magnetic slot wedges. Finally, we analyzed the performance of a traction machine under field weakening control. Moreover, we have outlined the requirements for an ideal magnetic slot wedge design.

Single-Inductor, Multiple-Input-Single-Output Converter Based Energy Mixer for Power Packet Distribution System

  • Reza, C.M.F.S.;Lu, Dylan Dah-Chuan;Qin, Ling;Qi, Jian
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1479-1488
    • /
    • 2018
  • Power packet (PP) distribution system distributes power to different loads that share the same distribution cable in a packetized form. When compared with conventional power systems, a PP distribution system (PPDS) can reduce standby power, eliminate Point-of-Load (PoL) power conversion, and intelligently control the load demand from the source side. Due to the absence of PoL conversion, when multiple power sources at different voltage levels and conditioning requirements jointly send power to various loads at different voltage ratings, the generated voltage has an irregular shape. A large filter at each of the load sides is required to reduce such a large voltage ripple. In this paper, a single-inductor, multiple-input-single-output converter structure based multiple-energy-source mixer is proposed. It combines PP generation, maximum power point tracking (MPPT) of renewable energy sources (RESs) and filtering at the source side. To demonstrate the possible renewable energy integration, a PV panel is used as a power source together with other constant voltage sources. The PV power is approximately tracked using the constant voltage method and it is used for each of the PP generations. The proposed PP distribution system is experimentally verified and it is shown that a conventional PI controller is sufficient for stable system operation.

철도차량용 선형전동기(LSRM) 위치검출 모델링 (Position Detecting Modeling of Linear Switched Reluctance Motor(LSRM) for Railway Vehicles)

  • 윤용호
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1907-1912
    • /
    • 2016
  • In fact, in order to obtain good performances and low torque ripple, a high-resolution sensor is needed, which is costly and usually needs a special construction for the machine. So researchers are becoming aware of their cost and are exploring the possibility of cost reduction. Information of rotor position is necessary to drive Linear Switched Reluctance Motor(LSRM). Therefore, linear optical encoder is used to detect a mover position. Normally, since the price of encoder, which is used for linear motor is relatively higher than the one used for rotory motor and the cost of additional equipment increases with the length of motor. This is not always appropriate, considering economical efficiency in case of using the linear optical encoder. As a results, LSRM has a great part for the total cost. Therefore, in this paper, we propose LSRM position detecting modeling with reflective type photo-sensor. Additionally, we have investigated the possibility of the reduced position sensor for LSRM drives with advanced control technique. To certify the overall characteristics of the proposed method, a simulation using PSIM software has been carried out and the informative results are displayed.

The Effect of FTA's Results on China Distribution Company

  • Lee, Young-Min
    • 유통과학연구
    • /
    • 제15권2호
    • /
    • pp.53-58
    • /
    • 2017
  • Purpose - The world economy is changing with FTA. Lots of FTAs are going on between countries and economic blocs in the world economy as the battle field of FTA. This study is aims to suggest a practical data about Korea-China FTA by analyzing an economic ripple effect and main issues on Korea-China FTA negotiation. Research design, data, and methodology - This study analyzes the economic impact and major issues expected during the promotion period of Korea-China FTA, and promoted the purpose of this research with literature review and comparative analysis. Result - FTA agreement with China is expected to contribute to Korean economic growth by bringing effectiveness of securing and resolving mutual trade conflict, and one-sided trade protection control of Chinese domestic demand market. The potentiality between United States and Korea is also very important issue. Conclusions - To minimize the adverse effects of FTA and to maximize the positive effects on the logistics industry, the Correspondence strategy is suggested based on the effects of FTA after analyzing the entire situation of the logistics. Especially, this article places emphasis on a close cooperation system between the government agencies to get a good conclusion from the negotiation even if the e-Commerce issue to be a critical point under Korea-China FTA.

LCL Resonant Compensation of Movable ICPT Systems with a Multi-load

  • Hua, Jie;Wang, Hui-Zhen;Zhao, Yao;Zou, Ai-Long
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1654-1663
    • /
    • 2015
  • Compared to LC resonance, LCL resonance has distinct advantages such as a large resonant capability, low voltage and current stresses of the power device, constant voltage or current output characteristics, and fault-tolerance capability. Thus, LCL resonant compensation is employed for a movable Inductive Contactless Power Transfer (ICPT) system with a multi-load in this paper, which achieves constant current output characteristics. Peculiarly, the primary side adopts a much larger compensation inductor than the primary leakage inductor to lower the reactive power, reduce the input current ripple, generate a large current in the primary side, and realize soft-switching. Furthermore, this paper proposes an approximate resonant point for large inductor-ratio LCL resonant compensation through fundamental wave analysis. In addition, the PWM control strategy is used for this system to achieve constant current output characteristics. Finally, an experimental platform is built, whose secondary E-Type coils can ride and move on a primary rail. Simulations and experiments are conducted to verify the effectiveness and accuracy of both the theory and the design method.

역기전력 추정법을 이용한 브러시리스 직류 전동기의 홀센서 상전류 전환시점 보상 방법 (Position Correction Method for Misaligned Hall-Effect Sensor of BLDC Motor using BACK-EMF Estimation)

  • 박제욱;김종훈;김장목
    • 전력전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.246-251
    • /
    • 2012
  • This paper proposes a new position compensation method for misaligned Hall-effect sensors of BLDCM(Brushless DC Motor). If the Hall-effect sensors are installed at wrong position, the exact rotor position cannot be obtained. Therefore, when the BLDCM is controlled with this wrong position, the torque ripple can be increased and the average torque also decreases. The back-EMF of BLDCM can be obtained by using the voltage equation and by multiplying the back-EMF constant and rotor speed. At a constant speed, the estimated back-EMF by using the multiplication of the back-EMF constant and rotor speed is constant, but the estimated back-EMF from the voltage equation decreases at the commutation point because the line-to-line back-EMF of two conducting phases is start to decrease at this point. Therefore, by using the difference between these two estimated back-EMFs, the commutation point of the phase current can be determined and position compensation can be carried out. The proposed position correction method doesn't require additional hardware circuit and can be easily implemented. The validity of the proposed position compensation method is verified through several experiments.