DOI QR코드

DOI QR Code

Design of digitally controlled CMOS voltage mode DC-DC buck converter for high resolution duty ratio control

고해상도 듀티비 제어가 가능한 디지털 제어 방식의 CMOS 전압 모드 DC-DC 벅 변환기 설계

  • Yoon, KwangSub (Dept. of Electronics Engineering, inha University) ;
  • Lee, Jonghwan (Dept. of System Semiconductor Engineering, sangmyung University)
  • Received : 2020.11.25
  • Accepted : 2020.12.24
  • Published : 2020.12.31

Abstract

This paper proposes a digitally controlled buck converter insensitive to process, voltage and temperature and capable of three modes of operation depending on the state of the output voltage. Conventional digital-controlled buck converters utilized A/D converters, counters and delay line circuits for accurate output voltage control, resulting in increasing the number of counter and delay line bits. This problem can be resolved by employing the 8-bit and 16-bit bidirectional shift registers, and this design technique leads a buck converter to be able to control duty ratio up to 128-bit resolution. The proposed buck converter was designed and fabricated with a CMOS 180 nano-meter 1-poly 6-metal process, generating an output voltage of 0.9 to 1.8V with the input voltage range of 2.7V to 3.6V, a ripple voltage of 30mV, and a power efficiency of up to 92.3%. The transient response speed of the proposed circuit was measured to be 4us.

본 논문은 공정, 전압 및 온도에 둔감하며, 출력전압 상태에 따라 3가지 동작모드가 가능한 디지털 제어 벅 변환기를 제안한다. 기존 디지털 제어 방식의 벅 변환기는 A/D 변환기, 카운터 및 딜레이 라인 회로를 사용하여서 정확한 출력 전압을 제어하였다. 정확한 출력 전압 제어를 위해서는 카운터 및 딜레이 라인 비트 수를 증가시켜서 회로 복잡성 증가 문제점을 지니고 있다. 이러한 회로의 복잡성 문제를 해결하기 위해서 제안된 회로에서는 8비트 및 16 비트 양 방향 쉬프트 레지스터를 사용하고 최대 128비트 해상도까지 듀티비 제어가 가능한 벅 변환기를 제안한다. 제안하는 벅 변환기는 CMOS 180 나노 공정 1-poly 6-metal을 사용하여 설계 및 제작하였으며, 2.7V~3.6V의 입력 전압과 0.9~1.8V의 출력 전압을 생성하고, 리플전압은 30mV, 전력 효율은 최대 92.3%, 과도기 응답속도는 4us이다.

Keywords

Acknowledgement

This research was supported in part by Inha Research grant and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2019R1F1A1050640). Authors thank to IDEC for CAD tool support and fabrication.

References

  1. Shivayogi Hiremath, Geng Yang, Kunal Mankodiya, "Wearable internet of things: Concept, architectural components and promises for person-centered healthcare," 2014 4th International Conference on Wireless Mobile Communication and Healthcare, pp.304-307. 2014. DOI: 10.1109/MOBIHEALTH.2014.7015971
  2. Uming Ko, "Ultra-low power SoC for wearable & IoT," VLSI Technology, Systems and Application (VLSI-TSA), International Symposium on, Hsinchu, Taiwan, 2016. DOI: 10.1109/VLSI-TSA.2016.7480477
  3. Seung Wook Yoon, Boris Petrov, Kai Liu, "Advanced wafer level technology: Enabling innovations in mobile, IoT and wearable electronics," Electronics Packaging and Technology Conference (EPTC), pp.1-5 Singapore, Singapore, 2015. DOI: 10.1109/EPTC.2015.7412320
  4. KIM, Sang-Yun, et al. "Design of a high efficiency dc-dc buck converter with two-step digital pwm and low power self-tracking zero current detector for iot applications." IEEE Transactions on Power Electronics, vol.33 no.2 pp.1428-1439, 2018. DOI: 10.1109/TPEL.2017.2688387
  5. HAYDER, Abbas Syed, et al. "Digitally Controlled Single-inductor Multiple-output Synchronous DC-DC Boost Converter with Smooth Loop Handover Using 55 nm Process," Journal of Power Electronics, vol.17, no.3 pp.821-834, 2017. DOI: 10.6113/JPE.2017.17.3.821
  6. ZHANG, Xin, et al. "A 0.6 V input CCM/DCM operating digital buck converter in 40 nm CMOS." IEEE Journal of Solid-State Circuits, vol..49, no.11 pp.2377-2386, 2014. DOI: 10.1109/JSSC.2014.2339325
  7. Y. J. Park et al., "A design of a 92.4% efficiency triple mode control DC-DC buck converter with low power retention mode and adaptive zero current detector for IoT/wearable applications," IEEE Trans. Power Electron., vol.32, no.9, pp. 6946-6960, 2017. DOI: 10.1109/TPEL.2016.2623812