• Title/Summary/Keyword: Ripple control

Search Result 823, Processing Time 0.023 seconds

A Study of Interleaved AC/DC Converter to Improved Power Factor and Current Ripple (역률과 전류 리플을 개선한 인터리브 AC/DC 컨버터에 관한 연구)

  • Seo, Sang-Hwa;Kim, Yong;Kwon, Soon-Do;Bae, Jin-Yong;Eom, Tae-Min
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.152-155
    • /
    • 2009
  • In high power application, PFC(Power Factor Correction) pre-regulators are generally required. PFC pre-regulators could achieve unity power factor, reduce line input current harmonics and utilize full line power. Interleaving PFC converters could reduce input ripple current, output capacitor ripple current and inductor size. With this closed loop interleaving method, both two phase converters are working at the boundary between continuous and discontinuous mode and accurate 180 degree phase shift is achieved. Implementation of this strategy could be easily integrated to the control chip. Finally, experimental results of a two-phase interleaved boost PFC are presented to verify the discussed features.

  • PDF

A Study on Economic Ripple Effect and Export Connection Method of Food Industry (식품산업의 경제적 파급효과와 수출 연계 방안에 관한 연구)

  • Chai, Jong-Hun
    • International Commerce and Information Review
    • /
    • v.12 no.1
    • /
    • pp.225-250
    • /
    • 2010
  • The purpose of this study is to grasp the ripple effect of food industry, which is rising as the prominent industry of the future and has a high forward & backward ripple effect, on domestic economy and other industries through Industrial Input-Output Analysis and suggest the export connection method for the development of food industry in the future. As an analysis result, it was found that the effect on product inducement and employment inducement was very high. Like that, it is necessary to establish export connection strategy to escape from narrow domestic market and advance into world market in order to develop food industry, which has a high ripple effect on domestic market. For the export connection of food industry, it is possible to enlarge overseas market demand of domestic food industry by providing domestic food companies with export-concerned information such as overseas export market information and food market information, advertising world market for domestic food industry actively through the globalization of Korea food, securing food processing technology, removing export unavailability risk through the export insurance policy and advertizing the safety of food industry through the reinforcement of food safety control standard and penalty standard.

  • PDF

Reduction of Torque Ripple due to Current-Sensing Errors in Inverter-Fed AC Motor Systems (인버터의 전류측정 오차에 기인하는 교류전동기의 토크리플 저감)

  • 윤덕용;홍순찬
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.280-286
    • /
    • 1998
  • This paper proposes a novel method to reduce the torque ripple due to the non-ideality of the current sensing parts in vector-controlled inverter-fed AC motor drive systems. For PMSM(Permanent Magnet Synchronous Motor), motor output torque equations are derived in terms of their offset voltages and different voltage transducing gains. And the effects of phase current errors on motor torque are analyzed for both salient PMSM and non-salient PMSM. The proposed method can eliminate the torque ripple by nulling the offset voltages and setting the voltage transducing gains to the same value. To verify the proposed method, digital simulations are carried out for non-salient PMSM.

  • PDF

Torque ripple reduction for High power Induction Motor driven by DTC (DTC로 구동되는 대용량 유도전동기의 토크리플 저감법)

  • Park, Young-Min;Yun, Jae-Hak;Han, Gi-Jun;Choi, Se-Kyung;Jung, Myung-Kil;Lee, Se-Hyun;Lee, Kyo-Beum;Song, Joong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.369-371
    • /
    • 1999
  • A torque ripple minimization technique is proposed for high power induction motors driven by 3-level inverters with switching frequency of inverter switching elements limited around 500Hz level. It is noted that conventional DTC algorithms with torque ripple minimization scheme are devised for applications with relatively high switching frequency above 2-3kHz. A new DTC algorithm, especially for low switching frequency inverter system, illustrates relatively reduced torque ripple characteristics all over the operating speed region. Simulation results show effectiveness of the proposed control algorithm, and associated experimental works will be presented in the final paper.

  • PDF

3-Level Boost Converter Having Lower Inductor for Interleaving Operation (인터리빙 동작을 위한 하단 인덕터를 갖는 3-Level Boost Converter)

  • Lee, Kang-Mun;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Kang, Jeong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.96-105
    • /
    • 2021
  • Large-scale power converters consist of series or parallel module combinations. In these modular converter systems, the interleaving technique can be applied to improve capacitor reliability by reducing the ripple of the I/O current in which each module operates as a phase difference. However, when applying the interleaving technique for conventional three-level boost converters, the short-circuit period of the converter can be an obstacle. Such problem is caused by the absence of a low-level inductor of the conventional three-level boost converter. To solve this problem, a three-level boost converter with a low-level inductor is proposed and analyzed to enable interleaved operation. In the proposed circuit, the current ripple of the output capacitor depends on the neutral point connections between the modules. In this study, the ripple current is analyzed by the neutral point connections of the three-level boost converter that has a low-level inductor, and the effectiveness of the proposed circuit is proven by simulation and experiment.

Construct of Electronics Load System using the Multi-level Interiver Converter (다중전류레벨 인터리버 컨버터를 이용한 전자부하 시스템 구성)

  • Moon, Hyeon-Cheol;Song, Kwang-Cheol;Lee, Chang-Ho;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.989-998
    • /
    • 2020
  • Recently, demands for large-capacity electronic loads are increasing in various industries such as a reliability test for the performance of a DC power supply device or a dummy-load for improving the stability of an independent microgrid to be actively built in the future. The electronic load required in these various fields requires an operation such as a continuously variable resistance load while minimizing the switching harmonic component generated in the electric load current in order to reduce the influence of interference from the load peripheral device. Electronic loads require a system that minimizes switching current ripple for load control. Therefore, in this paper, we propose a three-level module converter structure to reduce the current ripple of an electronic load, and a multilevel interleaved power converter topology to reduce the current ripple. The validity of the proposed electronic load, 3-level 6 interleaver converter, was verified by simulation and experiment. In addition, the user's convenience was provided by applying the emotional command curve interface method.

Sensorless Speed Control Algorithm of IPMSM for Wide Speed Range with an Improved Full-Order Flux Observer (향상된 전차원 자속 관측기를 이용한 매입형 영구자석 동기 전동기의 넓은 영역 센서리스 속도제어 알고리즘 기법)

  • Kang, Seong Yun;Yoon, Jae Seung;Shin, Hye Ung;Lee, Kyo-Beum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.339-346
    • /
    • 2017
  • This paper proposes a sensorless control method to improve the performance of an internal permanent magnet synchronous motor (IPMSM) control by using a full-order flux observer in a wide speed range. The conventional sensorless control method uses a constant gain for high performance at low-speed region. However, this method has drawbacks such as an increased angle error and current ripple in the high-speed region due to the fixed gain value. In order to overcome this problem, the gain of the full-order flux observer is changed by considering the angle error in the whole speed range. The proposed method minimizes the angle error for each region of the speed range by applying a relevant gain value, which improves the current ripple reduction and motor noise cancellation. The validity of proposed sensorless control method is verified by a simulation and an experiment.

The Development of High-Current Power Supply System for Electrolytic Copper Foil

  • Luo, An;Ma, Fujun;Xiong, Qiaopo;He, Zhixing
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.399-410
    • /
    • 2015
  • A 6.5 V/50 kA high-frequency switching power supply (HSPS) system composed of 10 power modules is developed to meet the requirements of copper-foil electrolysis. The power module is composed of a two-leg pulse width modulation (PWM) rectifier and a DC/DC converter. The DC/DC converter adopts two full-wave rectifiers in parallel to enhance the output. For the two-leg PWM rectifier, the ripple of the DC-link voltage is derived. A composite control method with a ripple filter is then proposed to effectively improve the performance of the rectifier. To meet the process demand of copper-foil electrolysis, the virtual impedance-based current-sharing control method with load current full feedforward is proposed for n-parallel DC/DC converters. The roles of load current feedforward and virtual impedance are analyzed, and the current-sharing control model of the HSPS system is derived. Virtual impedance is used to adjust the current-sharing impedance without changing the equivalent output impedance, which can effectively reduce current-sharing errors. Finally, simulation and experimental results verify the structure and control method.

Neural network based direct torque control for doubly fed induction generator fed wind energy systems

  • Aftab Ahmed Ansari;Giribabu Dyanamina
    • Advances in Computational Design
    • /
    • v.8 no.3
    • /
    • pp.237-253
    • /
    • 2023
  • Torque ripple content and variable switching frequency operation of conventional direct torque control (DTC) are reduced by the integration of space vector modulation (SVM) into DTC. Integration of space vector modulation to conventional direct torque control known as SVM-DTC. It had been more frequently used method in renewable energy and machine drive systems. In this paper, SVM-DTC is used to control the rotor side converter (RSC) of a wind driven doubly-fed induction generator (DFIG) because of its advantages such as reduction of torque ripples and constant switching frequency operation. However, flux and torque ripples are still dominant due to distorted current waveforms at different operations of the wind turbine. Therefore, to smoothen the torque profile a Neural Network Controller (NNC) based SVM-DTC has been proposed by replacing the PI controller in the speed control loop of the wind turbine controller. Also, stability analysis and simulation study of DFIG using process reaction curve method (RRCM) are presented. Validation of simulation study in MATLAB/SIMULINK environment of proposed wind driven DFIG system has been performed by laboratory developed prototype model. The proposed NNC based SVM-DTC yields superior torque response and ripple reduction compared to other methods.

Nonlinear Adaptive Control for Position Synchronization of a Gantry-Moving-Type Linear Motor (겐트리형 리니어 모터의 동기화를 위한 비선형 적응제어)

  • Han, Sang-Oh;Kim, In-Keun;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.12
    • /
    • pp.1925-1930
    • /
    • 2010
  • For high-speed/high-accuracy position control of a gantry-moving-type linear motor, we propose a nonlinear adaptive controller including a synchronization algorithm. Linear motors are easily affected by force ripple, friction, and parameter variations because there is no mechanical transmission to reduce the effects of model uncertainties and external disturbances. Synchronization error is also caused by skew motion, model uncertainties, and force disturbance on each axis. Nonlinear effects such as friction and ripple force are estimated and compensated for. The synchronization algorithm is used to reduce the synchronous error of the two side pillars. The performance of the controller is evaluated via computer simulations.