• Title/Summary/Keyword: Ring Flow

Search Result 391, Processing Time 0.03 seconds

A Study on Development of Model Materials Showing Similar Flow Characteristics of Hot Mild Steel at Various Temperatures (고온 연강 유동특성을 상사하는 모델재료 개발에 관한 연구)

  • 이종헌;김영호;배원병;이원화
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1161-1171
    • /
    • 1993
  • Model materials are developed to achieve similarity of flow patterns for mild steels in forming processes at high temperatures. The model materials consist of pure plasticine and one or two additives such as resin and lanolin. To verify the similarity of flow patterns between physical modeling and compression of mild steels at high temperatures, ring and compression tests have been carried out with the developed-model materials at various strain rates, temperatures and lubricants. The test results are in good agreement with the flow patterns obtained from upsetting of a mild steel at high temperatures.

The Dye Penetration into the Xylem of Robinia pseudoacacia and Pyrus ussuriensis through Water Flow Path (아까시나무와 산돌배나무의 목부(木部)에 있어서 수분이동경로(水分移動經路)에 따른 색소침투(色素浸透))

  • Chun, Su Kyoung;Han, Sang Sup
    • Journal of Korean Society of Forest Science
    • /
    • v.81 no.4
    • /
    • pp.357-362
    • /
    • 1992
  • To understand water flow path in the cells of Robinia pseudoacacia and Pyrus ussuriensis and obtain color wood from them, this experiment was performed by penetrating 0.5% acidic fuchsin and 0.5% fast green solution into the living wood of them. A comparison was made of the wood structure and water flow path from Robinia pseudoacacia containing the ring-porous wood with tyloses, and Pyrus ussuriensis including solitary diffuse-porous wood with distinct fiber pits. The dye penetrated into vessel elements in the early wood of two growth rings from bark in Robinia pseudoacacia, but permeated all xylem in fonts ussuriensis. In Robinia pseudoacacia, the vessels of heart wood and intermediate wood were not stained because of tyloses.

  • PDF

Parametric Study on Heat Flux Characteristics of a Sub-scale Calorimeter (막냉각량 및 작동점 변화가 액체로켓 칼로리미터의 열유속에 미치는 영향)

  • Kim Jong-Gyu;Lee Kwang-Jin;Seo Seong-Hyeon;Han Yeoung-Min;Choi Hwan-Seok;Cho Won-Kook
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.346-350
    • /
    • 2005
  • Effects of the changes of a film cooling mass flow rate and operating conditions on the heat flux characteristics of the subscale calorimeter were studied. A film cooling ring with twelve orifices is inserted between the injector head and the calorimeter. The calorimeter is composed of nineteen cooling channels. When a mass flow rate of film cooling is 10.5 % of a main fuel mass flow rate, maximum heat flux at the nozzle throat is decreased by 30% compared to that without film cooling. In the OD3(of-design point) test result, maximum heat flux at the nozzle throat is increased by 31% compared to that of the DP(design point) test when a film cooling flow rate is zero.

  • PDF

Variations of Air Temperature, Relative Humidity and Pressure in a Low Pressure Chamber for Plant Growth (식물생장용 저압챔버 내의 기온, 상대습도 및 압력의 변화)

  • Park, Jong-Hyun;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.3
    • /
    • pp.200-207
    • /
    • 2009
  • This study was conducted to analyze the variations of air temperature, relative humidity and pressure in a low pressure chamber for plant growth. The low pressure chamber was composed of an acrylic cylinder, a stainless plate, a mass flow controller, an elastomer pressure controller, a read-out-box, a vacuum pump, and sensors of air temperature, relative humidity, and pressure. The pressure leakage in the low pressure chamber was greatly affected by the material and connection method of tubes. The leakage rate in the low pressure chamber with the welding of the stainless tubes and a plate decreased by $0.21kPa{\cdot}h^{-1}$, whereas the leakage in the low pressure chamber with teflon tube and rubber O-ring was given by $1.03kPa{\cdot}h^{-1}$. Pressure in the low pressure chamber was sensitively fluctuated by the air temperature inside the chamber. An elastomer pressure controller was installed to keep the pressure in the low pressure chamber at a setting value. However, inside relative humidity at dark period increased to saturation level.. Two levels (25 and 50kPa) of pressure and two levels (500 and 1,000sccm) of mass flow rate were provided to investigate the effect of low pressure and mass flow rate on relative humidity inside the chamber. It was concluded that low setting value of pressure and high mass flow rate of mixed gas were the effective methods to control the pressure and to suppress the excessive rise of relative humidity inside the chamber.

Cold flow Test and Ignition Test of a 75-tonf-Class Thrust Chamber with Ablative Material for Technology Demonstration (75톤급 기술검증용 내열재 연소기의 수류시험과 점화시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Kim, Mun-Ki;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.26-37
    • /
    • 2011
  • A 75-tonf-class LRE(liquid rocket engine) thrust chamber with ablative material for technology demonstration was manufactured on the basis of development technologies of 30-tonf-class LRE. Hydraulic characteristics of the thrust chamber were examined through cold flow test and ignition test of low flow condition. Test result showed that hydraulic function was good. Side ignition method with igniter ring also showed a fine function of ignition in operating ways of static condition. But a close review is required to understand the phenomena of generation and extinction of specific frequencies showed in dynamic characteristics ways. To achieve these, a large combustion test facility which is capable of performing combustion test at design condition of the 75-tonf-class thrust chamber should be constructed as soon as possible.

Hazard Prevention Using Multi-Level Debris Flow Barriers (다단식(多段式) 유연성 토석류 방지시설에 관한 적용성 검토 연구)

  • Baek, Yong;Choi, Youngchul;Kwon, Oil;Choi, Seungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.15-23
    • /
    • 2010
  • Debris flows are a natural hazard which looks like a combination of flood, land and rock slide. Large rainfall in July 2006 produced several large scale debris flows and many small debris flows that resulted in loss of life and considerable property and railway damage, as was widely reported in the national media. The hazard "debris flow" is still insufficiently researched. Furthermore debris flows are very hard to predict. Flexible Ring net barriers are multi-functional mitigation devices commonly applied to rock fall or floating wood protection in floods, snow avalanches and also mud flows or granular debris flows, if properly dimensioned for the process or processes for which they are intended. Overtopping of the barriers by debris flows and sediment transport is possible, supporting the design concept that a series of barriers may be used to stop volumes of debris larger than are possible using only one barrier. The future for these barrier concepts looks promising because these barriers represent the state of art for such applications and are superior to many other available options.

Effect of Flow-Regime Change due to Damming on the River Morphology and Vegetation Cover in the Downstream River Reach: A case of Hapchon Dam on the Hwang River (댐 건설에 의한 유황 변화에 따른 하류 하도에서 하천지형학적 변화 및 식생피복의 변화: 황강 합천댐 사례)

  • Choi, Sung-Uk;Yoon, Byung-Man;Woo, Hyo-Seop;Cho, Kang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.1
    • /
    • pp.55-66
    • /
    • 2004
  • The Hapchon Dam, located upstream of the Hwang River, Korea, was constructed in December, 1988. Due to the lack of storage of water, the dam gate has not been operated during last ten years. Thus, a new ecosystem has been established at the downstream part of the dam. This is not a common phenomenon which can be found elsewhere in the country. The present study investigates the effect of flow regime change on the river morphology and vegetation cover in the downstream river reach after the dam construction. The analysis of flow regime is carried out, and the changes in bed elevation and in channel cross sections are examined. Site investigations including tree ring tests are also performed. The increase in the vegetation cover is estimated by comparing aerial photographs taken before and after dam construction.

An study on the ramp tabs for thurst vector control symmetrically installed at the supersonic nozzle exit (초음속 노즐 출구에 대칭적으로 설치한 추력방향제어장치인 램프 탭의 연구)

  • Kim, Kyoung-Rean;Ko, Jae-Myoung;Park, Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.32-37
    • /
    • 2007
  • Aerodynamic forces and moments have been used to control rocket propelled vehicles. If control is required at very low speed, Those systems only provide a limited capability because aerodynamic control force is proportional to the air density and low dynamic pressure. But thrust vector control(TVC) can overcome the disadvantages. TVC is the method which generates the side force and roll moment by controlling exhausted gas directly in a rocket nozzle. TVC is classified by mechanical and fluid dynamic methods. Mechanical methods can change the flow direction by several objects installed in a rocket nozzle exhaust such as tapered ramp tabs and jet vane. Fluid dynamic methods control the flight direction with the injection of secondary gaseous flows into the rocket nozzle. The tapered ramp tabs of mechanical methods are used in this paper. They installed at the rear in the rocket nozzle could be freely moved along axial and radial direction on the mounting ring to provide the mass flow rate which is injected from the rocket nozzle. In this paper, the conceptual design and the study on the tapered ramp tabs of the thurst vector control has been carried out using the supersonic cold flow system and schlieren system. This paper provides the thrust spoilage, three directional forces and moments and distribution of surface pressure on the region enclosed by the tapered ramp tabs.

Performance Evaluation of Service-Aware Optical Transport System

  • Youn, Ji-Wook;Yu, Jea-Hoon;Yoo, Tae-Whan
    • ETRI Journal
    • /
    • v.32 no.2
    • /
    • pp.241-247
    • /
    • 2010
  • We propose and experimentally demonstrate a service-aware optical transport system. The proposed service-aware optical transport system makes a flow based on service type and priority of traffic. The generated flow is mapped to a corresponding sub-${\lambda}$ for transport over an optical network. Using sub-${\lambda}$ provided by the centralized control plane, we could effectively provide quality-of-service guaranteed Ethernet service and best-effort service simultaneously in a single link. The committed information rate (CIR) traffic and best-effort traffic are assigned to different sub-${\lambda}s$. The bandwidth of the CIR traffic is guaranteed without being affected by violation traffic because the bandwidth is managed per each sub-${\lambda}$. The failure detection time and restoration time from a link failure is measured to be about 60 ${\mu}s$ and 22 ms, respectively, in the ring network. The measured restoration time is much smaller than the 50 ms industry requirement for real-time services. The fast restoration time allows the proposed service-aware optical transport system to offer high availability and reliability which is a requirement for transport networks.

Design Optimization of Wake Equalizing Duct Using CFD (CFD를 이용한 Wake Equalizing Duct의 최적설계)

  • Lee, Ho-Sung;Kim, Dong-Joon
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.4
    • /
    • pp.42-47
    • /
    • 2011
  • In this paper, wake equalizing duct (WED) form optimization was carried out using computational fluid dynamics (CFD) techniques. A WED is a ring-shaped flow vane with a foil-type cross-section fitted to a hull in front of the upper propeller area. The main advantage of a WED is the power savings resulting from the uniformity of the velocity distribution on the propeller plane, a reduction in the flow separation at the aft-body, and lift generation with a forward force component on the foil section. This paper intends to evaluate these functions and find an optimized WED form for minimizing the viscous resistance and equalizing the wake distribution. In the optimization process, the study uses four WED parameters: the angle of the section, longitudinal location, and angles of the axes for the half rings against the longitudinal and transverse planes of the ship. KRISO 300K VLCC2 (KVLCC2) is chosen as an example ship to demonstrate the WED optimization. The optimization procedure uses genetic algorithms (GAs), a gradient-based optimizer for the refinement of the solution, and Non-dominated Sorting GA-II(NSGA-II) for Multiobjective Optimization. The results show that the optimized WED can reduce the viscous resistance at the expense of the uniformity of the wake distribution.