• Title/Summary/Keyword: Rietveld Analysis

Search Result 84, Processing Time 0.037 seconds

A Study on the Reappraisal of Gerrit Thomas Rietveld's Design Concept (게리트 리트벨트 디자인 개념 재평가에 관한 연구)

  • Lee, Kwang-In
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.4
    • /
    • pp.97-105
    • /
    • 2012
  • This study aims to evaluate Rietveld's creative design style and concepts. To this end, I looked into the evaluation of major researchers on Rietveld, classified all his works into four groups according to the design types and analyzed them. As follows: based on the results of the analysis of works I concluded. First, Rietveld created the concept of the spatial extension to the ingenious joint which had the structural node formed of three listels with quadrangular section. It is the design innovation that led to liberate the closed construction. Second, Rietveld had opened up the possibility to neutralize the gravitational three-dimensional works. He subtracted the weight in the direction of gravity from the three-dimensional structure of the works and painted the three primary colors on them partially to get rid of the original material color. Therefore they looked like the forms liberated from gravity. Third, Rietveld ripped off the surfaces of cube through several formative experiments and decomposed the volume into the tesseract. Through this method of realizing the new plastic concepts, he completed the architectural models of weightlessness. Fourth, Rietveld opened the possibility of the realization of the three-dimensional works integrated all space and time in the one-pieced works and the folded works. Fifth, Rietveld steadily experimented and realized the internal and external integration of time and space in his later works.

Quantitative Analysis of Feldspar Mixture Samples Using the Rietveld Refinement Method (Rietveld Refinement 방법을 응용한 장석 혼합시료의 정량분석 연구)

  • Shim, Sang-Heon;Ahn, Jung-Ho;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.62-79
    • /
    • 1994
  • The quanttative and structural analysis of the binary standard mixtures of albite and quartz, and microcline and albite were carried out using the Rietveld refinement method in order to investigate the accuracy and precision of the method. The quantitative analysis using the Rietveld method results in a standard deviation of 4 wt % for the albite-quartz standard mixtures and 1 wt % for the microcline-albite standard mixtures, suggesting that its accuracy is far better than that of the conventional XRD method in which only a few selected peaks are utilized. Furthermore, the unit-cell parameters of component minerals in mixtures were also estimated accurately during the analysis. It was observed that the refined weight fractions deviate systematically from their measured values when the method is applied to the mixtures that contain minerals with different degrees of preferred orientation, such as albite-quartz mixtures. The preferred orientation parameters and R-values suggest that the systematic deviation is caused as a result of the preferred orientation effect of feldspar crystallites. It is evident that the preferred orientation corrections are of help for the accurate determination of unit-cell parameters, although they may not improve the result of quantitative analysis significantly. The refined weight fraction of the mineral with higher degree of preferred orientation in mixture is greater than the measured one. This is apparently caused by the effect of geometry of feldspar crystallites in the surface of the mounted sample. The Rietveld refinement method minimizes the problems inherent in the traditional XRD methods, such as the line overlap, primary extinction, and preferred orientation effect, by fitting every data point in a whole pattern explicitly. Furthermore, accurate unit-cell parameters as well as scale factors that can be obtained from the Rietveld refinement are used for the quqantification. The present stdudy demonstrates that the Rietveld method yields far more accurate analytical result than the conventional XRD quantitative analysis method does.

  • PDF

A Study of Practical and Optimized Mineral Quantification (실용적이고 최적화된 광물정량분석법 연구)

  • Son, Byeong-Kook;An, Gi-O
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.227-239
    • /
    • 2021
  • A practical and effective method of X-ray powder diffraction analysis was investigated for quantitative analysis of the mineral content of natural samples. Sample mounting experiments were conducted to select the best randomly oriented powder sample mount. A comparative experiment was also made between a reference intensity ratio (RIR) method, which compares a single peak intensity with standard material, and the Rietveld method, which calculates a full X-ray diffraction pattern, to search for the effective method of mineral quantification. In addition, samples containing amorphous minerals were quantitatively analyzed by the Rietveld method and the efficiency was reviewed. As a result of the study, the optimal random orientation could be reached by the side mounting method. The Rietveld method using the full pattern of X-ray diffraction was more suitable for mineral quantitative analysis, rather than the RIR method using a specific peak. However, either method could depend on the analyst's experience in addition to analytical technique. Moreover, amorphous minerals can be quantitatively analyzed by the Rietveld method, and the analysis results make the geological analysis possible.

Characterization of crystal phase evolution in cordierite honeycomb for diesel particulate filter by using rietveld refinement and SEM-EDS methods (Rietveld 정밀화법과 SEM-EDS 분석에 의한 DPF용 코디어라이트 하니컴 세라믹스의 결정성장 과정 분석)

  • Chae, Ki-Woong;Kim, Kang San;Kim, Jeong Seog;Kim, Shin-Han
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.3
    • /
    • pp.116-126
    • /
    • 2021
  • Diesel particulate filter (DPF) is a typical application field of cordierite (Mg2Al4Si5O18) honeycomb. Green body for DPF honeycomb was extruded using slurry paste and sintered at the temperature range of 980~1450℃. Quantitative crystal phase analysis was carried out by using Rietveld refinement method for powder XRD data. In conjunction with the quantitative Rietveld analysis, SEM-EDS analysis was carried for the crystal phases (indialite, cordierite, cristobalite, alumina, spinel, mullite, pro-enstatite). After removing amorphous phase on the sintered surfaces by chemical etching method, the shape and composition of the crystal phases can be clearly identified by SEM-EDS method. By combining the Rietveld refinement method and SEM-EDS analysis, crystal phase evolution process in DPF cordierite ceramics could be clarified. In addition, the coefficient of thermal expansion (CTE) of the DPF honeycombs were measured and compared with the calculated CTEs based on the quantitative crystal phase analysis results.

Rietveld Analysis of Nano-crystalline MnFe2O4 with Electron Powder Diffraction

  • Kim, Jin-Gyu;Seo, Jung-Wook;Cheon, Jin-Woo;Kim, Youn-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.183-187
    • /
    • 2009
  • The structure of nano-crystalline $MnFe_2O_4$ was determined and refined with electron powder diffraction data employing the Rietveld refinement technique. A nano-crystalline sample (with average crystal size of about 10.9 nm) was characterized by selected area electron diffraction in an energy-filtering transmission electron microscope operated at 120 kV. All reflection intensities were extracted from a digitized image plate using the program ELD and then used in the course of structure refinements employing the program FULLPROF for the Rietveld analysis. The final structure was refined in space group Fd-3m (# 227) with lattice parameters a=8.3413(7) $\AA$. The reliability factors of the refinement are $R_F$=7.98% and $R_B$=3.55%. Comparison of crystallographic data between electron powder diffraction data and reference data resulted in better agreement with ICSD-56121 rather than with ICSD-28517 which assumes an initial structure model.

The structure analysis of $Y_1Ba_2Cu_3O_x$ high Tc superconductor based on rietveld method (리트벨트 해석법을 이용한 $Y_1Ba_2Cu_3O_x$ 고온 초전도체의 구조분석)

  • 채기병;소대화
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.780-786
    • /
    • 1995
  • For the execution of RIETAN program adopting Rietveld Analysis Method, the sample superconductor is made according to the solid state synthesis method at 920.deg. C for 24hrs, and was examined for the optimization of parameters needed to analyze Rietveld method with the input of the measured pattern data after measuring the pattern resulted from the X-ray diffraction. It was proven that the lattice constant of the superconductor which was consisted of Pmmm orthorhombic crystal structure in the analyzed space group correspond to the presented theoretical lattice constant a=3.8887(8).angs., b=3.8238(4).angs., c=11.7079.angs.. Therefore, it was examined and confin-ned that the R factor, which was compensated after analyzing the structure of superconductor resulted from this experimented data with the computer simulation, was refined to $R_{wp}$=8.83[%], $R_{P}$=6.47[%], $R_{I}$=10.08[%], $R_{F}$=7.19[%], $R_{E}$=3.76[%]. On the basis of these experimental data, the significant parameter such as the scale factor(S) and the zero point shift(Z) and FWHM value(U,V,W) were optimized as follows; S=2.0827E-3, Z=0.2146, U=4.2761E-2, V=1.7983E-2, and W=2.6768E-2.2.2.2.2.2.

  • PDF

An Study on the Structure of Maghemite(${\gamma}$-Fe$_2$O$_3$) I -Rietveld Analysis of Powder XRD Patterns- (마게마이트(${\gamma}$-Fe$_2$O$_3$)대한 연구 I -분말 X-선 회절무늬의 Rietveld 분석-)

  • 신형섭
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.10
    • /
    • pp.1113-1119
    • /
    • 1998
  • Crystal structure of needle-shaped maghemite(${\gamma}$-{{{{ { {Fe }_{2 }O }_{3 } }}) has been studied by the Rieveld analysis of powder X-ray diffraction patterns. The tetragonal space group P41,.3212 and cubic space group P41,.32 have been have been used for the refinement of X-ray diffraction patterns. The crystal system of maghemite is closed to tetragonal more than cubic. The tetragonal lattice parameters are a=8.3460$\AA$ and c=25.034$\AA$ The standard X-ray diffraction pattern of the tetragonal maghemite analyzed with space group P41,.3212 is proposed.

  • PDF

Phase Transition adn Crystal Structure Analysis Using Rietveld Method in the $(Na_{0.3}Sr_{0.7})(Ti_{0.7}M_{0.3})O_3 (M=Ta, Nb)$ System (Rietveld 법을 이용한 $(Na_{0.3}Sr_{0.7})(Ti_{0.7}M_{0.3})O_3 (M=Ta, Nb)$ 계에서의 결정구조 해석과 상전이 특성)

  • 정훈택;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.5
    • /
    • pp.582-586
    • /
    • 1995
  • The crystal structures of (Na0.3Sr0.7)(Ti0.7M0.3)O3 (M=Ta, Nb) compounds were determined using the Rietveld method. Due to the tilting of a oxygen octahedron, (Na0.3Sr0.7)(Ti0.7Nb0.3)O3 had a superlattice of doubled a, b and c of simple perovskite. The crystal structure of (Na0.3Sr0.7)(Ti0.7M0.3)O3 was tetragonal with a space group 14/mmm. The crystal structure of (Na0.3Sr0.7)(Ti0.7M0.3)O3 was a cubic with space group Pm3m, in which no tilting of oxygen octahedron was observed. The difference in the oxygen tilting of these two materials was due to the larger covalency of Nb-O bond than that of Ta-O bond, which induced a strong $\pi$Nb0 bonding in (Na0.3Sr0.7)(Ti0.7M0.3)O3. Therefore, the higher transition temperature of (Na0.3Sr0.7)(Ti0.7M0.3)O3 could be related to the larger tilting of oxygen octahedron.

  • PDF