• Title/Summary/Keyword: Riemannian warped product manifold

Search Result 34, Processing Time 0.023 seconds

FIBRED RIEMANNIAN SPACE WITH KENMOTSU STRUCTURE

  • Kim, Byung-Hak
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.3
    • /
    • pp.921-928
    • /
    • 1999
  • K. Kenmotsu introduced and studied the so-called Kenmotsu manifold related to the warped product space. In this paper we charac-terize a Kenmotsu Manifold using the fibred Riemannian space.

NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS ON SEMI-RIEMANNIAN MANIFOLDS

  • Jung, Yoon-Tae;Kim, Yun-Jeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.317-336
    • /
    • 2000
  • In this paper, when N is a compact Riemannian manifold, we discuss the method of using warped products to construct timelike or null future (or past) complete Lorentzian metrics on $M=(-{\infty},{\;}\infty){\;}{\times}f^N$ with specific scalar curvatures.

  • PDF

ON CONTACT SLANT SUB MANIFOLD OF L × f F

  • Sohn, Won-Ho
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.129-134
    • /
    • 2004
  • It is well known that the warped product $L\;{\times}\;{_f}\;F$ of a line L and a Kaehler manifold F is an almost contact Riemannian manifold which is characterized by some tensor equations appeared in (1.7) and (1.8). In this paper we determine contact slant submanifolds tangent to the structure vector field of $L\;{\times}\;{_f}\;F$.

STATIC AND RELATED CRITICAL SPACES WITH HARMONIC CURVATURE AND THREE RICCI EIGENVALUES

  • Kim, Jongsu
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1435-1449
    • /
    • 2020
  • In this article we make a local classification of n-dimensional Riemannian manifolds (M, g) with harmonic curvature and less than four Ricci eigenvalues which admit a smooth non constant solution f to the following equation $$(1)\hspace{20}{\nabla}df=f(r-{\frac{R}{n-1}}g)+x{\cdot} r+y(R)g,$$ where ∇ is the Levi-Civita connection of g, r is the Ricci tensor of g, x is a constant and y(R) a function of the scalar curvature R. Indeed, we showed that, in a neighborhood V of each point in some open dense subset of M, either (i) or (ii) below holds; (i) (V, g, f + x) is a static space and isometric to a domain in the Riemannian product of an Einstein manifold N and a static space (W, gW, f + x), where gW is a warped product metric of an interval and an Einstein manifold. (ii) (V, g) is isometric to a domain in the warped product of an interval and an Einstein manifold. For the proof we use eigenvalue analysis based on the Codazzi tensor properties of the Ricci tensor.

GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN ALMOST KENMOTSU MANIFOLDS

  • Mohan Khatri;Jay Prakash Singh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.717-732
    • /
    • 2023
  • The goal of this paper is to analyze the generalized m-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized m-quasi-Einstein structure (g, f, m, λ) is locally isometric to a hyperbolic space ℍ2n+1(-1) or a warped product ${\tilde{M}}{\times}{_{\gamma}{\mathbb{R}}$ under certain conditions. Next, we proved that a (κ, µ)'-almost Kenmotsu manifold with h' ≠ 0 admitting a closed generalized m-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized m-quasi-Einstein metric (g, f, m, λ) in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space ℍ3(-1) or the Riemannian product ℍ2(-4) × ℝ.

RIGIDITY AND NONEXISTENCE OF RIEMANNIAN IMMERSIONS IN SEMI-RIEMANNIAN WARPED PRODUCTS VIA PARABOLICITY

  • Railane Antonia;Henrique F. de Lima;Marcio S. Santos
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.1
    • /
    • pp.41-63
    • /
    • 2024
  • In this paper, we study complete Riemannian immersions into a semi-Riemannian warped product obeying suitable curvature constraints. Under appropriate differential inequalities involving higher order mean curvatures, we establish rigidity and nonexistence results concerning these immersions. Applications to the cases that the ambient space is either an Einstein manifold, a steady state type spacetime or a pseudo-hyperbolic space are given, and a particular investigation of entire graphs constructed over the fiber of the ambient space is also made. Our approach is based on a parabolicity criterion related to a linearized differential operator which is a divergence-type operator and can be regarded as a natural extension of the standard Laplacian.

ON THE CONFORMAL DEFORMATION OVER WARPED PRODUCT MANIFOLDS

  • YOON-TAE JUNG;CHEOL GUEN SHIN
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 1997
  • Let (M = B$\times$f F, g) be an ($n \geq3$ )-dimensional differential manifold with Riemannian metric g. We solve the following elliptic nonlinear partial differential equation (equation omitted). where $\Delta_{g}$ is the Laplacian in the $\Delta$g-metric and ($h(\chi)$) is the scalar curvature of g and ($H(\chi)$) is a function on M.

  • PDF

PROJECTIVELY FLAT WARPED PRODUCT RIEMANNIAN MANIFOLDS

  • Oh, Won-Tae;Shin, Seung-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.1039-1044
    • /
    • 2000
  • We investigate the projectively flat warped product manifolds and study the geometric structure of the base space and its fibre. Specifically we find the conditions that the scalar curvature of the base space (B,g) vanishes if and only if f is harmonic on (B,g) and the fibre (F,$\bar{g}$) is a space of constant curvature.

PARTIAL DIFFERENTIAL EQUATIONS AND SCALAR CURVATURES ON SPACE-TIMES

  • JUNG, YOON-TAE;JEONG, BYOUNG-SOON;CHOI, EUN-HEE
    • Honam Mathematical Journal
    • /
    • v.27 no.2
    • /
    • pp.273-285
    • /
    • 2005
  • In this paper, when N is a compact Riemannian manifold, we discuss the method of using warped products to construct Lorentzian metrics on $M=[a,\;b){\times}_f\;N$ with specific scalar curvatures.

  • PDF