• Title/Summary/Keyword: Riemannian metric

Search Result 153, Processing Time 0.019 seconds

THE BFK-GLUING FORMULA FOR ZETA-DETERMINANTS AND THE VALUE OF RELATIVE ZETA FUNCTIONS AT ZERO

  • Lee, Yoon-Weon
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.5
    • /
    • pp.1255-1274
    • /
    • 2008
  • The purpose of this paper is to discuss the constant term appearing in the BFK-gluing formula for the zeta-determinants of Laplacians on a complete Riemannian manifold when the warped product metric is given on a collar neighborhood of a cutting compact hypersurface. If the dimension of a hypersurface is odd, generally this constant is known to be zero. In this paper we describe this constant by using the heat kernel asymptotics and compute it explicitly when the dimension of a hypersurface is 2 and 4. As a byproduct we obtain some results for the value of relative zeta functions at s=0.

ON THE GEOMETRY OF VECTOR BUNDLES WITH FLAT CONNECTIONS

  • Abbassi, Mohamed Tahar Kadaoui;Lakrini, Ibrahim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1219-1233
    • /
    • 2019
  • Let $E{\rightarrow}M$ be an arbitrary vector bundle of rank k over a Riemannian manifold M equipped with a fiber metric and a compatible connection $D^E$. R. Albuquerque constructed a general class of (two-weights) spherically symmetric metrics on E. In this paper, we give a characterization of locally symmetric spherically symmetric metrics on E in the case when $D^E$ is flat. We study also the Einstein property on E proving, among other results, that if $k{\geq}2$ and the base manifold is Einstein with positive constant scalar curvature, then there is a 1-parameter family of Einstein spherically symmetric metrics on E, which are not Ricci-flat.

GENERALIZED m-QUASI-EINSTEIN STRUCTURE IN ALMOST KENMOTSU MANIFOLDS

  • Mohan Khatri;Jay Prakash Singh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.3
    • /
    • pp.717-732
    • /
    • 2023
  • The goal of this paper is to analyze the generalized m-quasi-Einstein structure in the context of almost Kenmotsu manifolds. Firstly we showed that a complete Kenmotsu manifold admitting a generalized m-quasi-Einstein structure (g, f, m, λ) is locally isometric to a hyperbolic space ℍ2n+1(-1) or a warped product ${\tilde{M}}{\times}{_{\gamma}{\mathbb{R}}$ under certain conditions. Next, we proved that a (κ, µ)'-almost Kenmotsu manifold with h' ≠ 0 admitting a closed generalized m-quasi-Einstein metric is locally isometric to some warped product spaces. Finally, a generalized m-quasi-Einstein metric (g, f, m, λ) in almost Kenmotsu 3-H-manifold is considered and proved that either it is locally isometric to the hyperbolic space ℍ3(-1) or the Riemannian product ℍ2(-4) × ℝ.

On Generalized 𝜙-recurrent Kenmotsu Manifolds with respect to Quarter-symmetric Metric Connection

  • Hui, Shyamal Kumar;Lemence, Richard Santiago
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.2
    • /
    • pp.347-359
    • /
    • 2018
  • A Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is called a generalized ${\phi}-recurrent$ if its curvature tensor R satisfies $${\phi}^2(({\nabla}_wR)(X,Y)Z)=A(W)R(X,Y)Z+B(W)G(X,Y)Z$$ for all $X,\;Y,\;Z,\;W{\in}{\chi}(M)$, where ${\nabla}$ denotes the operator of covariant differentiation with respect to the metric g, i.e. ${\nabla}$ is the Riemannian connection, A, B are non-vanishing 1-forms and G is given by G(X, Y)Z = g(Y, Z)X - g(X, Z)Y. In particular, if A = 0 = B then the manifold is called a ${\phi}-symmetric$. Now, a Kenmotsu manifold $M^n({\phi},\;{\xi},\;{\eta},\;g)$, (n = 2m + 1 > 3) is said to be generalized ${\phi}-Ricci$ recurrent if it satisfies $${\phi}^2(({\nabla}_wQ)(Y))=A(X)QY+B(X)Y$$ for any vector field $X,\;Y{\in}{\chi}(M)$, where Q is the Ricci operator, i.e., g(QX, Y) = S(X, Y) for all X, Y. In this paper, we study generalized ${\phi}-recurrent$ and generalized ${\phi}-Ricci$ recurrent Kenmotsu manifolds with respect to quarter-symmetric metric connection and obtain a necessary and sufficient condition of a generalized ${\phi}-recurrent$ Kenmotsu manifold with respect to quarter symmetric metric connection to be generalized Ricci recurrent Kenmotsu manifold with respect to quarter symmetric metric connection.

YANG-MILLS INDUCED CONNECTIONS

  • Park, Joon-Sik;Kim, Hyun Woong;Kim, Pu-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.813-821
    • /
    • 2010
  • Let G and H be compact connected Lie groups with biinvariant Riemannian metrics g and h respectively, ${\phi}$ a group isomorphism of G onto H, and $E:={\phi}^{-1}TH$ the induced bundle by $\phi$ over the base manifold G of the tangent bundle TH of H. Let ${\nabla}$ and $^H{\nabla}$ be the Levi-Civita connections for the metrics g and h respectively, $\tilde{\nabla}$ the induced connection by the map ${\phi}$ and $^H{\nabla}$. Then, a necessary and sufficient condition for $\tilde{\nabla}$ in the bundle (${\phi}^{-1}TH$, G, ${\pi}$) to be a Yang- Mills connection is the fact that the Levi-Civita connection ${\nabla}$ in the tangent bundle over (G, g) is a Yang- Mills connection. As an application, we get the following: Let ${\psi}$ be an automorphism of a compact connected semisimple Lie group G with the canonical metric g (the metric which is induced by the Killing form of the Lie algebra of G), ${\nabla}$ the Levi-Civita connection for g. Then, the induced connection $\tilde{\nabla}$, by ${\psi}$ and ${\nabla}$, is a Yang-Mills connection in the bundle (${\phi}^{-1}TH$, G, ${\pi}$) over the base manifold (G, g).

A Novel Method for Moving Object Tracking using Covariance Matrix and Riemannian Metric (공분산 행렬과 리만 측도를 이용한 이동물체 추적 방법)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.364-370
    • /
    • 2011
  • This paper propose a novel method for tracking moving object based on covariance matrix and Riemannian Manifolds. With image backgrounds continuously changed, we use the covariance matrices to extract features for tracking nonrigid object undergoing transformation and deformation. The covariance matrix can make fusion of different types of features and has its small dimension, therefore we enable to handle the spatial and statistical properties as well as the component correlation. The proposed method can estimate the position of the moving object by employing the covariance matrix of object region as a feature vector and comparing the candidate regions. Rimannian Geometry is efficiently adapted to object deformation and change of shape and improve the accuracy by using geodesic distance to predict the estimated position with the minimum distance. The experimental results have shown that the proposed method correctly tracked the moving object.

TOPOLOGICAL ENTROPY OF SWITCHED SYSTEMS

  • Huang, Yu;Zhong, Xingfu
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1157-1175
    • /
    • 2018
  • For a switched system with constraint on switching sequences, which is also called a subshift action, on a metric space not necessarily compact, two kinds of topological entropies, average topological entropy and maximal topological entropy, are introduced. Then we give some properties of those topological entropies and estimate the bounds of them for some special systems, such as subshift actions generated by finite smooth maps on p-dimensional Riemannian manifold and by a family of surjective endomorphisms on a compact metrizable group. In particular, for linear switched systems on ${\mathbb{R}}^p$, we obtain a better upper bound, by joint spectral radius, which is sharper than that by Wang et al. in [42,43].

THE UNIT TANGENT SPHERE BUNDLE WHOSE CHARACTERISTIC JACOBI OPERATOR IS PSEUDO-PARALLEL

  • Cho, Jong Taek;Chun, Sun Hyang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1715-1723
    • /
    • 2016
  • We study the characteristic Jacobi operator ${\ell}={\bar{R}({\cdot},{\xi}){\xi}$ (along the Reeb flow ${\xi}$) on the unit tangent sphere bundle $T_1M$ over a Riemannian manifold ($M^n$, g). We prove that if ${\ell}$ is pseudo-parallel, i.e., ${\bar{R}{\cdot}{\ell}=L{\mathcal{Q}}({\bar{g}},{\ell})$, by a non-positive function L, then M is locally flat. Moreover, when L is a constant and $n{\neq}16$, M is of constant curvature 0 or 1.

GEOMETRIC INEQUALITIES FOR SUBMANIFOLDS IN SASAKIAN SPACE FORMS

  • Presura, Ileana
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.1095-1103
    • /
    • 2016
  • B. Y. Chen introduced a series of curvature invariants, known as Chen invariants, and proved sharp estimates for these intrinsic invariants in terms of the main extrinsic invariant, the squared mean curvature, for submanifolds in Riemannian space forms. Special classes of submanifolds in Sasakian manifolds play an important role in contact geometry. F. Defever, I. Mihai and L. Verstraelen [8] established Chen first inequality for C-totally real submanifolds in Sasakian space forms. Also, the differential geometry of slant submanifolds has shown an increasing development since B. Y. Chen defined slant submanifolds in complex manifolds as a generalization of both holomorphic and totally real submanifolds. The slant submanifolds of an almost contact metric manifolds were defined and studied by A. Lotta, J. L. Cabrerizo et al. A Chen first inequality for slant submanifolds in Sasakian space forms was established by A. Carriazo [4]. In this article, we improve this Chen first inequality for special contact slant submanifolds in Sasakian space forms.

ON WARPED PRODUCT SPACES WITH A CERTAIN RICCI CONDITION

  • Kim, Byung Hak;Lee, Sang Deok;Choi, Jin Hyuk;Lee, Young Ok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.5
    • /
    • pp.1683-1691
    • /
    • 2013
  • In this paper, we obtain the criteria that the Riemannian manifold B is Einstein or a gradient Ricci soliton from the information of the second derivative of $f$ in the warped product space $R{\times}_fB$ with gradient Ricci solitons. Moreover, we construct new examples of non-Einstein gradient Ricci soliton spaces with an Einstein or non-Einstein gradient Ricci soliton leaf using our main theorems. Finally we also get analogous criteria for the Lorentzian version.