• 제목/요약/키워드: Riemann -function

검색결과 133건 처리시간 0.022초

On the artificially-upstream flux splitting method

  • Sun M.;Takayama K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.156-157
    • /
    • 2003
  • A simple method is proposed to split the flux vector of the Euler equations by introducing two artificial wave speeds. The direction of wave propagation can be adjusted by these two wave speeds. This idea greatly simplifies the upwinding, and leads to a new family of upwind schemes. Numerical flux function for multi-dimensional Euler equations is formulated for any grid system, structured or unstructured. A remarkable simplicity of the scheme is that it successfully achieves one-sided approximation for all waves without recourse to any matrix operation. Moreover, its accuracy is comparable with the exact Riemann solver. For 1-D Euler equations, the scheme actually surpasses the exact solver in avoiding expansion shocks without any additional entropy fix. The scheme can exactly resolve stationary contact discontinuities, and it is also freed of the carbuncle problem in multi­dimensional computations.

  • PDF

A NUMERICAL INVESTIGATION ON THE STRUCTURE OF THE ROOT OF THE (p, q)-ANALOGUE OF BERNOULLI POLYNOMIALS

  • Ryoo, Cheon Seoung
    • Journal of applied mathematics & informatics
    • /
    • 제35권5_6호
    • /
    • pp.587-597
    • /
    • 2017
  • In this paper we define the (p, q)-analogue of Bernoulli numbers and polynomials by generalizing the Bernoulli numbers and polynomials, Carlitz's type q-Bernoulli numbers and polynomials. We also give some interesting properties, explicit formulas, a connection with (p, q)-analogue of Bernoulli numbers and polynomials. Finally, we investigate the zeros of the (p, q)-analogue of Bernoulli polynomials by using computer.

A POLAR REPRESENTATION OF A REGULARITY OF A DUAL QUATERNIONIC FUNCTION IN CLIFFORD ANALYSIS

  • Kim, Ji Eun;Shon, Kwang Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • 제54권2호
    • /
    • pp.583-592
    • /
    • 2017
  • The paper gives the regularity of dual quaternionic functions and the dual Cauchy-Riemann system in dual quaternions. Also, the paper researches the polar representation and properties of a dual quaternionic function and their regular quaternionic functions.

SOME RESULTS ON PARAMETRIC EULER SUMS

  • Xu, Ce
    • Bulletin of the Korean Mathematical Society
    • /
    • 제54권4호
    • /
    • pp.1255-1280
    • /
    • 2017
  • In this paper we present a new family of identities for parametric Euler sums which generalize a result of David Borwein et al. [2]. We then apply it to obtain a family of identities relating quadratic and cubic sums to linear sums and zeta values. Furthermore, we also evaluate several other series involving harmonic numbers and alternating harmonic numbers, and give explicit formulas.

EVALUATIONS OF SOME QUADRATIC EULER SUMS

  • Si, Xin;Xu, Ce
    • Bulletin of the Korean Mathematical Society
    • /
    • 제57권2호
    • /
    • pp.489-508
    • /
    • 2020
  • This paper develops an approach to the evaluation of quadratic Euler sums that involve harmonic numbers. The approach is based on simple integral computations of polylogarithms. By using the approach, we establish some relations between quadratic Euler sums and linear sums. Furthermore, we obtain some closed form representations of quadratic sums in terms of zeta values and linear sums. The given representations are new.

Fredholm Type Integral Equations and Certain Polynomials

  • Chaurasia, V.B.L.;Shekhawat, Ashok Singh
    • Kyungpook Mathematical Journal
    • /
    • 제45권4호
    • /
    • pp.471-480
    • /
    • 2005
  • This paper deals with some useful methods of solving the one-dimensional integral equation of Fredholm type. Application of the reduction techniques with a view to inverting a class of integral equation with Lauricella function in the kernel, Riemann-Liouville fractional integral operators as well as Weyl operators have been made to reduce to this class to generalized Stieltjes transform and inversion of which yields solution of the integral equation. Use of Mellin transform technique has also been made to solve the Fredholm integral equation pertaining to certain polynomials and H-functions.

  • PDF

A class of infinite series summable by means of fractional calculus

  • Park, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • 제11권1호
    • /
    • pp.139-145
    • /
    • 1996
  • We show how some interesting results involving series summation and the digamma function are established by means of Riemann-Liouville operator of fractional calculus. We derive the relation $$ \frac{\Gamma(\lambda)}{\Gamma(\nu)} \sum^{\infty}_{n=1}{\frac{\Gamma(\nu+n)}{n\Gamma(\lambda+n)}_{p+2}F_{p+1}(a_1, \cdots, a_{p+1},\lambda + n; x/a)} = \sum^{\infty}_{k=0}{\frac{(a_1)_k \cdots (a_{(p+1)}{(b_1)_k \cdots (b_p)_k K!} (\frac{x}{a})^k [\psi(\lambda + k) - \psi(\lambda - \nu + k)]}, Re(\lambda) > Re(\nu) \geq 0 $$ and explain some special cases.

  • PDF

RESULTS ON THE ALGEBRAIC DIFFERENTIAL INDEPENDENCE OF THE RIEMANN ZETA FUNCTION AND THE EULER GAMMA FUNCTION

  • Xiao-Min Li;Yi-Xuan Li
    • Bulletin of the Korean Mathematical Society
    • /
    • 제60권6호
    • /
    • pp.1651-1672
    • /
    • 2023
  • In 2010, Li-Ye [13, Theorem 0.1] proved that P(ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), Γ"(z)) ≢ 0 in ℂ, where m is a non-negative integer, and P(u0, u1, . . . , um, v0, v1, v2) is any non-trivial polynomial in its arguments with coefficients in the field ℂ. Later on, Li-Ye [15, Theorem 1] proved that P(z, Γ(z), Γ'(z), . . . , Γ(n)(z), ζ(z)) ≢ 0 in z ∈ ℂ for any non-trivial distinguished polynomial P(z, u0, u1, . . ., un, v) with coefficients in a set Lδ of the zero function and a class of nonzero functions f from ℂ to ℂ ∪ {∞} (cf. [15, Definition 1]). In this paper, we prove that P(z, ζ(z), ζ'(z), . . . , ζ(m)(z), Γ(z), Γ'(z), . . . , Γ(n)(z)) ≢ 0 in z ∈ ℂ, where m and n are two non-negative integers, and P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is any non-trivial polynomial in the m + n + 2 variables u0, u1, . . . , um, v0, v1, . . . , vn with coefficients being meromorphic functions of order less than one, and the polynomial P(z, u0, u1, . . . , um, v0, v1, . . . , vn) is a distinguished polynomial in the n + 1 variables v0, v1, . . . , vn. The question studied in this paper is concerning the conjecture of Markus from [16]. The main results obtained in this paper also extend the corresponding results from Li-Ye [12] and improve the corresponding results from Chen-Wang [5] and Wang-Li-Liu-Li [23], respectively.

FRACTIONAL INTEGRATION AND DIFFERENTIATION OF THE (p, q)-EXTENDED MODIFIED BESSEL FUNCTION OF THE SECOND KIND AND INTEGRAL TRANSFORMS

  • Purnima Chopra;Mamta Gupta;Kanak Modi
    • Communications of the Korean Mathematical Society
    • /
    • 제38권3호
    • /
    • pp.755-772
    • /
    • 2023
  • Our aim is to establish certain image formulas of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) by employing the Marichev-Saigo-Maeda fractional calculus (integral and differential) operators including their composition formulas and using certain integral transforms involving (p, q)-extended modified Bessel function of the second kind Mν,p,q(z). Corresponding assertions for the Saigo's, Riemann-Liouville (R-L) and Erdélyi-Kober (E-K) fractional integral and differential operators are deduced. All the results are represented in terms of the Hadamard product of the (p, q)-extended modified Bessel function of the second kind Mν,p,q(z) and Fox-Wright function rΨs(z).

FURTHER LOG-SINE AND LOG-COSINE INTEGRALS

  • Choi, Junesang
    • Journal of the Chungcheong Mathematical Society
    • /
    • 제26권4호
    • /
    • pp.769-780
    • /
    • 2013
  • Motivated essentially by their potential for applications in a wide range of mathematical and physical problems, the log-sine and log-cosine integrals have been evaluated, in the existing literature on the subject, in many different ways. Very recently, Choi [6] presented explicit evaluations of some families of log-sine and log-cosine integrals by making use of the familiar Beta function. In the present sequel to the investigation [6], we evaluate the log-sine and log-cosine integrals involved in more complicated integrands than those in [6], by also using the Beta function.