• 제목/요약/키워드: Riemann -function

검색결과 133건 처리시간 0.019초

SERIES REPRESENTATIONS FOR THE EULER-MASCHERONI CONSTANT $\gamma$

  • Choi, June-Sang;Seo, Tae-Young
    • East Asian mathematical journal
    • /
    • 제18권1호
    • /
    • pp.75-84
    • /
    • 2002
  • The third important Euler-Mascheroni constant $\gamma$, like $\pi$ and e, is involved in representations, evaluations, and purely relationships among other mathematical constants and functions, in various ways. The main object of this note is to summarize some known series representaions for $\gamma$ with comments for their proofs, and to point out that one of those series representaions for $\gamma$ seems to be incorrectly recorded. A brief historical comment for $\gamma$ is also provided.

  • PDF

THE ZETA-DETERMINANTS OF HARMONIC OSCILLATORS ON R2

  • Kim, Kyounghwa
    • Korean Journal of Mathematics
    • /
    • 제19권2호
    • /
    • pp.129-147
    • /
    • 2011
  • In this paper we discuss the zeta-determinants of harmonic oscillators having general quadratic potentials defined on $\mathbb{R}^2$. By using change of variables we reduce the harmonic oscillators having general quadratic potentials to the standard harmonic oscillators and compute their spectra and eigenfunctions. We then discuss their zeta functions and zeta-determinants. In some special cases we compute the zeta-determinants of harmonic oscillators concretely by using the Riemann zeta function, Hurwitz zeta function and Gamma function.

A NOTE ON A CLASS OF CONVOLUTION INTEGRAL EQUATIONS

  • LUO, MIN-JIE;RAINA, R.K.
    • 호남수학학술지
    • /
    • 제37권4호
    • /
    • pp.397-409
    • /
    • 2015
  • This paper considers a class of new convolution integral equations whose kernels involve special functions such as the generalized Mittag-Leffler function and the extended Kummer hypergeometric function. Some basic properties of interconnection with the familiar Riemann-Liouville operators are obtained which are used in fiding the solution of the main convolution integral equation. Several consequences are deduced from the main result by incorporating certain extended forms of hypergeometric functions in our present investigation.

HYPERMEROMORPHY OF FUNCTIONS ON SPLIT QUATERNIONS IN CLIFFORD ANALYSIS

  • KIM, JI EUN;SHON, KWANG HO
    • East Asian mathematical journal
    • /
    • 제31권5호
    • /
    • pp.653-658
    • /
    • 2015
  • In this paper, we consider split quaternionic functions defined on an open set of split quaternions and give the split quaternionic functions whose each inverse function is sp-hyperholomorphic almost everywhere on ${\Omega}$. Also, we describe the definitions and notions of pseudoholomorphic functions for split quaternions.

ON SPHERICALLY CONCAVE FUNCTIONS

  • KIM SEONG-A
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제12권3호
    • /
    • pp.229-235
    • /
    • 2005
  • The notions of spherically concave functions defined on a subregion of the Riemann sphere P are introduced in different ways in Kim & Minda [The hyperbolic metric and spherically convex regions. J. Math. Kyoto Univ. 41 (2001), 297-314] and Kim & Sugawa [Charaterizations of hyperbolically convex regions. J. Math. Anal. Appl. 309 (2005), 37-51]. We show continuity of the concave function defined in the latter and show that the two notions of the concavity are equivalent for a function of class $C^2$. Moreover, we find more characterizations for spherically concave functions.

  • PDF

수학사적 관점에서 오일러 및 베르누이 수와 리만 제타함수에 관한 탐구 (On the historical investigation of Bernoulli and Euler numbers associated with Riemann zeta functions)

  • 김태균;장이채
    • 한국수학사학회지
    • /
    • 제20권4호
    • /
    • pp.71-84
    • /
    • 2007
  • 베르누이가 처음으로 자연수 k에 대하여 합 $S_n(k)=\sum_{{\iota}=1}^n\;{\iota}^k$에 관한 공식들을 유도하는 방법을 발견하였다([4]). 그 이후, 리만 제타함수와 관련된 베르누이 수와 오일러 수에 관한 성질들이 연구되어왔다. 최근에 김태균은 $\mathbb{Z}_p$상에서 p-진 q-적분과 관련된 확장된 q-베르누이 수와 q-오일러 수, 연속된 q-정수의 멱수의 합에 관한 성질들을 밝혔다. 본 논문에서는 연속된 q-정수의 멱수의 합에 관한 역사적 배경과 발달과정을 고찰하고, 오일러 및 베르누이 수와 관련된 리만 제타함수가 해석적 함수로써 값을 가지는 문제를 q-확장된 부분의 이론으로 연구되어온 q-오일러 제타함수에 대해 체계적으로 논의한다.

  • PDF

EULER SUMS OF GENERALIZED HYPERHARMONIC NUMBERS

  • Xu, Ce
    • 대한수학회지
    • /
    • 제55권5호
    • /
    • pp.1207-1220
    • /
    • 2018
  • The generalized hyperharmonic numbers $h^{(m)}_n(k)$ are defined by means of the multiple harmonic numbers. We show that the hyperharmonic numbers $h^{(m)}_n(k)$ satisfy certain recurrence relation which allow us to write them in terms of classical harmonic numbers. Moreover, we prove that the Euler-type sums with hyperharmonic numbers: $$S(k,m;p):=\sum\limits_{n=1}^{{\infty}}\frac{h^{(m)}_n(k)}{n^p}(p{\geq}m+1,\;k=1,2,3)$$ can be expressed as a rational linear combination of products of Riemann zeta values and harmonic numbers. This is an extension of the results of Dil [10] and $Mez{\ddot{o}}$ [19]. Some interesting new consequences and illustrative examples are considered.