• Title/Summary/Keyword: Riemann's $\zeta$-function

Search Result 23, Processing Time 0.022 seconds

EVALUATION OF CERTAIN ALTERNATING SERIES

  • Choi, Junesang
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.263-273
    • /
    • 2014
  • Ever since Euler solved the so-called Basler problem of ${\zeta}(2)=\sum_{n=1}^{\infty}1/n^2$, numerous evaluations of ${\zeta}(2n)$ ($n{\in}\mathbb{N}$) as well as ${\zeta}(2)$ have been presented. Very recently, Ritelli [61] used a double integral to evaluate ${\zeta}(2)$. Modifying mainly Ritelli's double integral, here, we aim at evaluating certain interesting alternating series.

EULER SUMS EVALUATABLE FROM INTEGRALS

  • Jung, Myung-Ho;Cho, Young-Joon;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.3
    • /
    • pp.545-555
    • /
    • 2004
  • Ever since the time of Euler, the so-called Euler sums have been evaluated in many different ways. We give here a proof of the classical Euler sum by following Lewin's method. We also consider some related formulas involving Euler sums, which are evaluatable from some known definite integrals.

On the historical investigation of Bernoulli and Euler numbers associated with Riemann zeta functions (수학사적 관점에서 오일러 및 베르누이 수와 리만 제타함수에 관한 탐구)

  • Kim, Tae-Kyun;Jang, Lee-Chae
    • Journal for History of Mathematics
    • /
    • v.20 no.4
    • /
    • pp.71-84
    • /
    • 2007
  • J. Bernoulli first discovered the method which one can produce those formulae for the sum $S_n(k)=\sum_{{\iota}=1}^n\;{\iota}^k$ for any natural numbers k. After then, there has been increasing interest in Bernoulli and Euler numbers associated with Riemann zeta functions. Recently, Kim have been studied extended q-Bernoulli numbers and q-Euler numbers associated with p-adic q-integral on $\mathbb{Z}_p$, and sums of powers of consecutive q-integers, etc. In this paper, we investigate for the historical background and evolution process of the sums of powers of consecutive q-integers and discuss for Euler zeta functions subjects which are studying related to these areas in the recent.

  • PDF

CERTAIN INTEGRAL REPRESENTATIONS OF GENERALIZED STIELTJES CONSTANTS γk(a)

  • Shin, Jong Moon
    • East Asian mathematical journal
    • /
    • v.31 no.1
    • /
    • pp.41-53
    • /
    • 2015
  • A large number of series and integral representations for the Stieltjes constants (or generalized Euler-Mascheroni constants) ${\gamma}_k$ and the generalized Stieltjes constants ${\gamma}_k(a)$ have been investigated. Here we aim at presenting certain integral representations for the generalized Stieltjes constants ${\gamma}_k(a)$ by choosing to use four known integral representations for the generalized zeta function ${\zeta}(s,a)$. As a by-product, our main results are easily seen to specialize to yield those corresponding integral representations for the Stieltjes constants ${\gamma}_k$. Some relevant connections of certain special cases of our results presented here with those in earlier works are also pointed out.

A NUMERICAL INVESTIGATION ON THE STRUCTURE OF THE ROOT OF THE (p, q)-ANALOGUE OF BERNOULLI POLYNOMIALS

  • Ryoo, Cheon Seoung
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.587-597
    • /
    • 2017
  • In this paper we define the (p, q)-analogue of Bernoulli numbers and polynomials by generalizing the Bernoulli numbers and polynomials, Carlitz's type q-Bernoulli numbers and polynomials. We also give some interesting properties, explicit formulas, a connection with (p, q)-analogue of Bernoulli numbers and polynomials. Finally, we investigate the zeros of the (p, q)-analogue of Bernoulli polynomials by using computer.

SOME IDENTITIES INVOLVING THE LEGENDRE'S CHI-FUNCTION

  • Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.219-225
    • /
    • 2007
  • Since the time of Euler, the dilogarithm and polylogarithm functions have been studied by many mathematicians who used various notations for the dilogarithm function $Li_2(z)$. These functions are related to many other mathematical functions and have a variety of application. The main objective of this paper is to present corrected versions of two equivalent factorization formulas involving the Legendre's Chi-function $\chi_2$ and an evaluation of a class of integrals which is useful to evaluate some integrals associated with the dilogarithm function.

ON BERNOULLI NUMBERS

  • Kim, Min-Soo;Son, Jin-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.391-410
    • /
    • 2000
  • In the complex case, we construct a q-analogue of the Riemann zeta function q(s) and a q-analogue of the Dirichlet L-function L(s,X), which interpolate the 1-analogue Bernoulli numbers. Using the properties of p-adic integrals and measures, we show that Kummer type congruences for the q-analogue Bernoulli numbers are the generalizations of the usual Kummer congruences for the ordinary Bernoulli numbers. We also construct a q0analogue of the p-adic L-function Lp(s, X;q) which interpolates the q-analogue Bernoulli numbers at non positive integers.

  • PDF

EULER SUMS OF GENERALIZED HYPERHARMONIC NUMBERS

  • Xu, Ce
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1207-1220
    • /
    • 2018
  • The generalized hyperharmonic numbers $h^{(m)}_n(k)$ are defined by means of the multiple harmonic numbers. We show that the hyperharmonic numbers $h^{(m)}_n(k)$ satisfy certain recurrence relation which allow us to write them in terms of classical harmonic numbers. Moreover, we prove that the Euler-type sums with hyperharmonic numbers: $$S(k,m;p):=\sum\limits_{n=1}^{{\infty}}\frac{h^{(m)}_n(k)}{n^p}(p{\geq}m+1,\;k=1,2,3)$$ can be expressed as a rational linear combination of products of Riemann zeta values and harmonic numbers. This is an extension of the results of Dil [10] and $Mez{\ddot{o}}$ [19]. Some interesting new consequences and illustrative examples are considered.

A reducible case of double hypergeometric series involving the riemann $zeta$-function

  • Park, Junesang;H. M. Srivastava
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.107-110
    • /
    • 1996
  • Usng the Pochhammer symbol $(\lambda)_n$ given by $$ (1.1) (\lambda)_n = {1, if n = 0 {\lambda(\lambda + 1) \cdots (\lambda + n - 1), if n \in N = {1, 2, 3, \ldots}, $$ we define a general double hypergeometric series by [3, pp.27] $$ (1.2) F_{q:s;\upsilon}^{p:r;u} [\alpha_1, \ldots, \alpha_p : \gamma_1, \ldots, \gamma_r; \lambda_1, \ldots, \lambda_u;_{x,y}][\beta_1, \ldots, \beta_q : \delta_1, \ldots, \delta_s; \mu_1, \ldots, \mu_v; ] = \sum_{l,m = 0}^{\infty} \frac {\prod_{j=1}^{q} (\beta_j)_{l+m} \prod_{j=1}^{s} (\delta_j)_l \prod_{j=1}^{v} (\mu_j)_m)}{\prod_{j=1}^{p} (\alpha_j)_{l+m} \prod_{j=1}^{r} (\gamma_j)_l \prod_{j=1}^{u} (\lambda_j)_m} \frac{l!}{x^l} \frac{m!}{y^m} $$ provided that the double series converges.

  • PDF