• Title/Summary/Keyword: Ride Comfort Analysis

Search Result 167, Processing Time 0.021 seconds

Convergent Investigation with Flow Analysis by Type of Shock Absorber Orifice (쇽업소버 오리피스의 유형별 유동해석으로의 융합적 고찰)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.195-200
    • /
    • 2020
  • In this study, the flow analyses by type of shock absorber orifice were carried out. A shock absorber is indispensable for the ride comfort that is important at the standard of a good car. As the analysis procedure, the actual speed of the shock absorber was set as the flow rate when the cylinder was advanced. And the flow analysis results on models A, B and C of shock absorber models were compared with each other. As the examination on the flow orifice in the vicinity of each model through the analysis of flow, the performance of shock absorber were recognized. On the whole, model A had the fastest flow rate and also had the largest flow rate. Model B had the slowest flow rate and the flow rate features of models B and C with the same number of orifices were similar. Through this study, it is possible to see which shock absorber orifice model facilitates the flow inside the cylinder and increases the ride comfort. It is seen that this analysis result on the flow analyses by type of shock absorber orifice can be applied by converging with the field of design.

Optimal design of car suspension springs by using a response surface method (반응 표면 분석법을 활용한 자동차용 현가스프링 최적화 설계)

  • Yoo, Dong-Woo;Kim, Do-Yeop;Shin, Dong-Gyu
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.246-255
    • /
    • 2016
  • When spring of the suspension is exerted by an external load, a car should be designed to prevent predictable damages and designed for a ride comfort. We used experiments design to design VON-MISES STRESS and K, a constant, of spring of suspension which is installed in a car as a goal level. We analyzed the result from Edison's Elastic - Plastic Analysis SW(CSD_EPLAST) by setting D, d, n as external diameter of coil, internal diameter of coil, the number of total coil respectively. The experiment design let the outcome be as Full-second order by using Box-Behnken which is one of response surface methods. Experimented and analyzed results based on the established experiments design, We found out design parameter which has desired VON-MISES STRESS and the constant K. Additionally, we predicted life time of when the external load was exerted by repeated load by using fatigue equation, and verification of plastic deformation has also been made. Additionally we interpreted a model, which is formed by optimized design parameter, with linear analysis and non-linear analysis, at the same time we also analyzed plastic deformation with the values from the both models. Finally, we predicted fatigue life of optimized model by using fatigue estimation theory and also evaluated a ride comfort with oscillation analysis.

  • PDF

Active Vibration Control of 1/4 Vehicle Model using Electro-magnetic Actuator (전자기 액튜에이터를 이용한 1/4차량 모델의 능동 진동 제어에 관한 연구)

  • Heo, Sin;Choe, Gang-Yun;Kim, Yu-Il
    • 연구논문집
    • /
    • s.23
    • /
    • pp.81-92
    • /
    • 1993
  • In this study, quarter vehicle model is used to analyse vibration control effects for ride comfort and handling safety according to this three kinds of control methods, which are the modal control, the sky-hook control and the linear viscous damping control. We performed theoretical analysis and experiments and compared two results. In experiments, electro-magnetic actuator was employed as a force actuator. It is shown that all three methods can effectively control the vehicle model. The modal control method gives similar control results using gain less than the viscous damping control.

  • PDF

Finite Element Modeling and Analysis of Nonlinear Dynamic characterisics of Leaf spring (판 스프링의 비선형 동특성 해석)

  • 임홍재;권영일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.842-846
    • /
    • 1996
  • Leaf springs are widely used as a major suspension component in many commercial vehicles, such as buses, trucks, etc. They have a complex dynamic behavior due to the geometric nonlinear and the contact mechanism between the leaves. The interface conditions between the leaves play a significant role in the global behavior of the comfort and ride of the vehicle system. The paper concentrates on modeling leaf springs and contact frictions between the leaves using a nonlinear finite element approach. A nonlinear load-displacement hysteresis curve for the leaf spring is simulated and its results are compared with test results.

  • PDF

Analysis and Test of Vehicle Dynamics for '97-New Mugunghwa Coaches (97-신조 무궁화 객차의 차량동특성 해석 및 시험)

  • 양희주;김진태;김필환;이찬우
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.494-501
    • /
    • 1998
  • This Paper describes the evaluation methods and criteria used to verify running Performance of railway vehicle, and shows results of vehicle dynamics simulation and running performance tests for New Mugunghwa Coaches that were designed and manufactured by DHI in 1997. Through running performance test of New Mugunghwa Coaches, Vibration, Ride Comfort were measured on the condition of service operation. As a results, each simulation and test results meet the criteria proposed by Korean National Railroad(KNR) and Korea Railroad Research Institute(KRRI).

  • PDF

Development of single axle bogie (1축 대차의 개발)

  • 양희주;임용규;김진태;오형식;오택렬
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.125-134
    • /
    • 2000
  • This paper presents the results of vehicle dynamics simulation for development of single axle bogie for freight vehicle. Those results consists of hunting stability, ride comfort and curving performance such as derailment ratio, unloading ratio. Dynamic behaviors of vehicle having single axle bogie is carried out using the multi-body dynamics simulation program(VAMPIRE). The results of analysis meet the criteria proposed by Korean National Railroad(KNR) and Korea Railroad Research Institute(KRRI).

  • PDF

Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics (시트 동특성을 고려한 인체 진동 해석)

  • Kang, Juseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.5689-5695
    • /
    • 2012
  • In this study, vibration properties of seat and human body are analyzed through test and numerical analysis methods by taking into account the viscoelastic characteristics of polyurethane foam as seat material which is applied for vehicle. These viscoelastic characteristics which show nonlinear and quasi-static behavior are obtained by compression test. In addition, the viscous elastic property of polyurethane foam is modelled mathematically by using convolution integral and nonlinear stiffness model. In order to analyze the performance on ride comfort of seat, vertical vibration model is established by using dynamic model of seat and vertical vibration model of human body at ISO5982, and so the related motion equations are derived. A numerical analysis simulation is applied by using the nonlinear motion equation with Runge-Kutta integral method. The dynamic responses of seat and human body on the input of vibration acceleration measured at the floor of the railway vehicle are examined. The variation of the index value at ride comfort on seat design parameters is analyzed and the methodology on seat design is suggested.

A Study on the Optimization of Suspension Characteristics for Improving Running Safety of Railway Vehicle (철도차량 주행안전성 향상을 위한 현가장치 최적화 연구)

  • Lee, Young-Yeob;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.909-914
    • /
    • 2009
  • A suspension is the most prior apparatus to decide vehicle's running safety and ride comfort, also the suspension stiffness is the most important parameter for the designing of the vehicle. Providing the strong stiffness with the primary suspension in order to improve the running safety with high speed, but it causes a problem with a curve running performance of a railway vehicle. Therefore, many studies deal with the optimal value of suspension stiffness. In this paper, we aim to optimize the suspension system to improve running safety by varying stiffness values of railway vehicle suspension. We have proceeded an analysis by design variables which are position, length, width, stiffness and damping coefficients of primary and secondary suspension to optimize the suspension characteristics. As a result of the optimization, we verified that the derailment coefficients of inside and outside of wheel are decreased in comparison with initial model.

A study on the improvement of a suspension system adopting a semiactive on-off damper (반능동 단속형 감쇠기를 이용한 현가장치 개선에 관한 연구)

  • 최성배;박윤식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.959-967
    • /
    • 1988
  • In this paper, 2-DOF vehicle suspension system with a semiactive on-off damper was studied for improving the ride comfort. It is known that a nonlinear hydraulic damper, which generates force proportional to the square of the relative velocity, can describe the actual fluid resisting type damper more properly than the traditional viscous damping model. On the other hand, hydraulic damper adoption in analysis makes the system nonlinear and causes difficulties to get the system response. In this work, time domain direct integration method was used to calculate system displacement and acceleration. first of all, the response of the suspension system experiencing a given road profile was optimized by Lagrangian multiplier method within the range of given damping coefficients. The appropriate on-loaf damping values were obtained by averaging the already calculated optimum damping coefficients from Lagrangian techniques. The criterion to control the on-off mechanism was determined by examining the suspension efficiency. It was found that the best out of practically applicable criteria is following the sign (positive and negative) of the multiplication of relative displacement and velocity. Judging from the theoretical calculations, it was proved that the semiactive on-off damper can increase suspension efficiency as much as 8-11% in object function.

Effect of Satisfaction with the EV Rent-a-car on the Purchase of the EV (전기 렌터카 이용 만족도가 전기차 구매에 미치는 영향)

  • Koh, Youngkyu;Kim, Suwan;Son, Sang-Hoon;Rhim, Chulwoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.193-208
    • /
    • 2022
  • The purpose of this study is to verify how the EV rent-a-car satisfaction affect the purchase intention of the EV. As a result of the study, Gender, Age, Quietness & Ride comfort, Charging infrastructure had a significant correlation with the EV rent-a car satisfaction level. and It is confirmed that the factors of Age, Quietness & Ride comfort, Charging infrastructure affect the EV purchase intention of the EV through the EV rent-a-car satisfaction level. The differentiation of the study is that it was analyzed through empirical research, focusing on the EV rent-a-cars as a major means of spreading the EV. also the analysis target was limited to first-time the EV's Users through the EV rent-a-car.