• Title/Summary/Keyword: Ride Comfort Analysis

Search Result 167, Processing Time 0.021 seconds

Semi-active and Active Vibration Control to Improve Ride Comfort in Railway Vehicle (철도차량 승차감 향상을 위한 반능동/능동 진동제어)

  • You, Wonhee;Shin, Yujeong;Hur, Hyunmoo;Park, Junhyuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.248-253
    • /
    • 2013
  • The maximum speed is one of the most important performance in high speed railway vehicle. The higher the train speed is, the worse the ride comfort is, In order to solve this problem, a semi-active or active suspension can be applied to high speed railway vehicle. The variable damper with hydraulic solenoid valve is used in the semi-active suspension. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. The MR(Magneto Rheological) damper can be considered instead of hydraulic variable damper which needs additional device, i.e. reserver tank for fluid. In the case of active suspension, hydraulic actuator or electro-mechanical one is used to suppress the carbody vibration in railway vehicle. In this study the MR damper and electro-mechanical actuator was considered in secondary suspension system of high speed railway vehicle. The dynamic analysis was performed by using 10-DOF dynamic equations of railway vehicle. The performance of the semi-active suspension and active suspension system were reviewed by using MATLAB/Simulink S/W. The vibration suppression effect of semi-active and active suspension system were investigated experimentally by using 1/5-scaled railway vehicle model.

  • PDF

A Study on the Improvement of Vehicle Ride Comfort by Genetic Algorithms (유전자 알고리즘을 이용한 차량 승차감 개선에 관한 연구)

  • 백운태;성활경
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.76-85
    • /
    • 1998
  • Recently, Genetic Algorithm(GA) is widely adopted into a search procedure for structural optimization, which is a stochastic direct search strategy that mimics the process of genetic evolution. This methods consist of three genetics operations maned selection, crossover and mutation. Contrast to traditional optimal design techniques which use design sensitivity analysis results, GA, being zero-order method, is very simple. So, they can be easily applicable to wide area of design optimization problems. Also, owing to multi-point search procedure, they have higher probability of converge to global optimum compared to traditional techniques which take one-point search method. In this study, a method of finding the optimum values of suspension parameters is proposed by using the GA. And vehicle is modelled as planar vehicle having 5 degree-of-freedom. The generalized coordinates are vertical motion of passenger seat, sprung mass and front and rear unsprung mass and rotate(pitch) motion of sprung mass. For rapid converge and precluding local optimum, share function which distribute chromosomes over design bound is introduced. Elitist survival model, remainder stochastic sampling without replacement method, multi-point crossover method are adopted. In the sight of the improvement of ride comfort, good result can be obtained in 5-D.O.F. vehicle model by using GA.

  • PDF

An Analytical Study on the Effects of the Compensation Cant in case of Superimposition of Vertical and Horizontal Circular Curves (평면원곡선과 종곡선 경합시 보정캔트의 효과에 대한 해석적 연구)

  • Um, Ju-Hwan;Choi, Il-Yoon;Park, Chan-Kyoung;Lee, Seong-Hyeok;Kim, Eun
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.562-568
    • /
    • 2011
  • Superimposition of horizontal and vertical curves occurs frequently owing to geographical conditions. It may hamper train ride comfort and running safety and inflate maintenance costs. In this study, when the horizontal and vertical curves are superimposed, in order to analyze the effects of the compensation cant, the analytical study for running safety, ride comfort and track forces was performed in high speed line. From the analysis results, it was found that it is better to apply the compensation cant at superimposition part.

H Control of Secondary Suspension in Railway Vehicles Equipped with a MR Damper (MR 댐퍼가 적용된 철도차량 이차현가장치의 H 제어)

  • Shin, Yu Jeong;You, Won Hee;Hur, Hyun Moo;Park, Joon Hyuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.10
    • /
    • pp.1051-1059
    • /
    • 2013
  • In general, lateral ride comfort of railway vehicle is mainly influenced by a secondary suspension placed between the bogie and carbody. Higher operating speeds of train results in increased vibration of carbody, which has a negative impact related to the ride comfort. To solve this problem, researches to replace the conventional passive suspension with (semi)active technology in the secondary suspension of a railway vehicle have been carried out. The semi-active suspension using the magneto-rheological damper is relatively simpler system and has advantage in maintenance compared to the hydraulic type semi-active damper. This study was performed to reduce lateral vibration acceleration of carbody related to ride comfort of railway vehicles with a semi-active suspension system. The numerical analysis was conducted by replacing passive lateral damper with semi-active MR damper, and robust control with the MR damper was applied to the 1/5 scaled railway vehicle model.

A Study for Vehicle Dynamic Analysis and Test of Airport Railroad (공항철도 차량 동특성 해석 및 시험에 관한 연구)

  • Yang, Hee-Joo;Seong, Jae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.188-193
    • /
    • 2007
  • Airport railroad have required maximum design speed 120km/h and wind speed 50m/s condition as design item of airport railroad vehicles. To design and manufacture the vehicle satisfying these conditions, it must carry out the dynamic behaviors analysis such as hunting stability, ride comfort derailment ratio, unloading ratio and lateral force to meet the criterion described in Urban Railroad Act. Dynamic behaviors of vehicle have carried out using the multi-body dynamics simulation program(VAMPIRE). This paper presents the evaluation methods and criterion used to verify dynamic performance of airport railroad vehicle, and show the analysis results of vehicle dynamic simulation and the test results for vibration and ride comfort measured on running performance tests. As a results, each analysis results and test results meet the criterion described in Urban Railroad Act.

  • PDF

Vibration Analysis of Body Mount System on Chassis Frame (섀시 프레임 상의 바디 마운트계의 진동해석)

  • Lee, Chang-Ro;Ryu, Bong-Jo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.141-146
    • /
    • 2010
  • This paper describes the static and dynamic characteristics of body mount system which are to be considered in the early design stage. At every location of body mount the static load and dynamic response to road input were calculated using the half car model. Normal mode analysis for the half car model was also performed. In the analysis the design parameters such as the stiffness of mount rubbers and their distribution on mount location were examined for improving ride comfort especially in the lower frequency range.

Analysis of Dynamic Behaviors for the Korea High Speed Train(KHST) by Using Non-Linear Creep Theory (비선형 크립이론을 이용한 한국형 고속전철의 동특성 해석)

  • 박찬경;김석원;김회선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1093-1098
    • /
    • 2002
  • Dynamic behaviors of the Korean High-speed Train(KHST) have been analyzed to investigate the performance on the stability, the safety and the ride comfort. Multi-body dynamics analysis program using Recursive method, called RecurDyn, have been employed in the numerical simulation. To model the wheel-rail contact, the RecurDyn uses its built-in module which uses the square root creep law. The accuracy of the rail module in RecurDyn. however, decreases in the analysis of flange contact because it linearizes the shape of the wheel and rail. To solve this problem, a nonlinear contact theory have been developed that considers the profiles of the wheel and rail. The results show that the KHST still needs more stability. The problem should be solved by the examinations of module and modeling.

  • PDF

Comparison among Active Roll Controllers for Rollover Prevention and Ride Comfort Enhancement (승차감 향상과 차량 전복 방지를 위한 능동 롤 제어기의 성능 비교)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.828-834
    • /
    • 2014
  • This paper presents a comparison among three types of approaches to an ARC (Active Roll Control) with an AARB(Active Anti-Roll Bar) for a vehicle system. Lateral acceleration and road profile are considered as disturbance. The ARC is designed with an LQ SOF (Linear Quadratic Static Output Feedback) control, $H_{\infty}$ control and SMC (Sliding Mode Control). These approaches are compared in terms of rollover prevention and ride comfort. For comparison, Bode plot analysis based on linear model and frequency response analysis based on CarSim simulation are performed.

Deflection Limit for a Maglev Railway Guideway Considering Ride Comfort (승차감을 고려한 자기부상철도 가이드웨이 구조물의 처짐 한계)

  • Lee, Jin Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.6
    • /
    • pp.367-374
    • /
    • 2020
  • A standard for the vibration magnitude of a maglev train is presented herein to ensure a comfortable ride for the passengers. The vibration magnitude is determined from the vertical acceleration of the car body. A parameter analysis of the maglev train system is then performed considering the vehicle-structure interaction, and a deflection limit of L/1300 is proposed to satisfy the standard for the vertical acceleration. The proposed deflection limit is applied to the dynamic analysis of the actual maglev train system to assess applicability. Compared with the existing standard for the guideway structure, the proposed deflection limit is expected to enable economical design and construction.

Online condition assessment of high-speed trains based on Bayesian forecasting approach and time series analysis

  • Zhang, Lin-Hao;Wang, You-Wu;Ni, Yi-Qing;Lai, Siu-Kai
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.705-713
    • /
    • 2018
  • High-speed rail (HSR) has been in operation and development in many countries worldwide. The explosive growth of HSR has posed great challenges for operation safety and ride comfort. Among various technological demands on high-speed trains, vibration is an inevitable problem caused by rail/wheel imperfections, vehicle dynamics, and aerodynamic instability. Ride comfort is a key factor in evaluating the operational performance of high-speed trains. In this study, online monitoring data have been acquired from an in-service high-speed train for condition assessment. The measured dynamic response signals at the floor level of a train cabin are processed by the Sperling operator, in which the ride comfort index sequence is used to identify the train's operation condition. In addition, a novel technique that incorporates salient features of Bayesian inference and time series analysis is proposed for outlier detection and change detection. The Bayesian forecasting approach enables the prediction of conditional probabilities. By integrating the Bayesian forecasting approach with time series analysis, one-step forecasting probability density functions (PDFs) can be obtained before proceeding to the next observation. The change detection is conducted by comparing the current model and the alternative model (whose mean value is shifted by a prescribed offset) to determine which one can well fit the actual observation. When the comparison results indicate that the alternative model performs better, then a potential change is detected. If the current observation is a potential outlier or change, Bayes factor and cumulative Bayes factor are derived for further identification. A significant change, if identified, implies that there is a great alteration in the train operation performance due to defects. In this study, two illustrative cases are provided to demonstrate the performance of the proposed method for condition assessment of high-speed trains.