• Title/Summary/Keyword: Rice Paddy

Search Result 2,273, Processing Time 0.033 seconds

Effect of Phosphate Application on Cadmium Extractability and its Uptake by Rice Cultivated in Contaminated Paddy Soil (중금속 오염 논토양에서 카드뮴의 용출성과 벼의 흡수에 대한 인산시용의 효과)

  • Lee, Hyun Ho;Kim, Keun Ki;Lee, Yong Bok;Kwak, Youn Sig;Kim, Suk Chul;Lee, Sang-beom;Shim, Chang Ki;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.4
    • /
    • pp.235-240
    • /
    • 2016
  • BACKGROUND: To determine effect of phosphate (P) application on Cadmium (Cd) extractability and its uptake by rice plant in Cd contaminated paddy soil, dipotassium ($K_2HPO_4$) which was the most effective of P materials to decrease Cd extractability in previous study was selected as P fertilizer. METHODS AND RESULTS: Dipotassium phosphate was applied at the rates of 0, 78, 234, and 390 kg $P_2O_5/ha$, and then rice was cultivated in submerged paddy soil from Jun. to Oct. in 2015. Cadmium concentrations in grain, straw, and root of rice plant decreased significantly with increasing application rate of $K_2HPO_4$. The trend of 1 M $NH_4OAc$ extractable Cd concentration in soil was similar to that of Cd uptake by rice plant. One M $NH_4OAc$ extractable Cd concentration was negatively related to soil pH and negative charge. Alleviation of Cd phytoavailability of rice in paddy soil might be attributed to increase in pH and negative charge of soil. Using a quadratic response model, amount of grain yield were related to $K_2HPO_4$ application rates as Grain yield = $5.38+2.39{\times}10^{-3}K_2HPO_4-6.65{\times}10^{-6}K_2HPO{_4}^2$ (model $R^2=0.968$). Using this equations, the greatest grain yield (5.6 Mg/ha) was at the rate of 180 kg $P_2O_5/ha$. At this application rate of P, the Cd concentration in grain was 0.53 mg/kg, implying ca. 23% lower than the control. CONCLUSION: From the view point of heavy metal safety and crop productivity, it might be good P management to apply P fertilizer with 4 times higher rate than recommendation (45 kg/ha).

Distribution and Leaching of Basal Nitrogen in Direct Seeding Rice on Dry Paddy (벼 건답직파 재배에서 기비질소의 토층간 분포와 용탈)

  • 한상준;이호진
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.6
    • /
    • pp.752-758
    • /
    • 1997
  • Urea, which is the major nitrogenous fertilizer used in Korea, has been used inefficiently in direct-seeding on dry soil by farmers. This study was conducted to investigate changes in concentrations of basal N within soil layers and its loss during early stage of rice growth. Urea fertilizer was applied in the rates of 7, 5.25, 3.5, 1.75, 0kg- N /10a under direct-seeded rice in dry paddy soil. The concentrations of ammonium and nitrate were determined in soil samples with different depths during period from seeding to the 3rd leaf stage. Futhermore, N leaching was measured in lysimeter designed with pot in greenhouse. ${NH_4}^+ \; and\; {NO_3}^-$ adsorption by soil increased with increasing concentration of added urea and decreased as deeper in soil layers. ${NH_4}^+$ concentration reached its peak at 7 days after urea application (DAA) and disappeared almostly at 14 DAA. ${NO_3}^-$ reached its peak at 10 DAA and decreased slowly until 14 DAA. ${NO_3}^-$N leaching started next day after urea application and completed until 11 DAA. We concluded that most of basal N applied to direct-seeded paddy was lost by leaching and not useful for rice plant which was in stage of germination. It is urgent need to develop new nitrogen application method for direct-seeding rice on dry soil.

  • PDF

Study on the Forage Cropping System of Italian Ryegrass and Summer Forage Crops at Paddy Field in Middle Region of Korea (중부지역 논에서 이탈리안 라이그라스와 하계 사료작물을 연계한 작부체계 연구)

  • Oh, Mirae;Choi, Bo Ram;Lee, Se Young;Jung, Jeong Sung;Park, Hyung Soo;Lee, Bae Hun;Kim, Ki-Yong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.2
    • /
    • pp.141-146
    • /
    • 2021
  • This study was evaluated to compare annual productivity and feed value of Italian ryegrass and summer forage crops at paddy field in middle region of Korea. Italian ryegrass (Kowinearly) was used as winter forage crop, and forage rice (Youngwoo) and barnyard millet (Jeju) were used as summer forage crops. Each crop was cultivated using the standard forage cultivation method. The plant height, dry matter yield, crude protein content, and total digestible nutrient content of Italian ryegrass were 90.6 cm, 7,681 kg/ha, 9.2%, and 63.8%, respectively, and it was no significant difference by summer forage crops (p>0.05). The plant height of summer forage crops was the higher in barnyard millet than in forage rice (p<0.05). The dry matter, crude protein, and total digestible nutrient yields of summer forage crops were the higher in forage rice than in barnyard millet (p<0.05). Also, the feed value of summer forage crops was higher in forage rice than in barnyard millet. In conclusion, the combination of Italian ryegrass-forage rice was the most effective cropping system for annual forage production with high-yield and high-feed value, and it was considered the combination of Italian ryegrass-barnyard millet was good cropping system for annual forage production through reducing labor and cultivating stable at paddy field in middle region of Korea.

Effect of Rice Straw Application on the Tillering of Paddy Rice (볏짚의 시용(施用)이 수도(水稻)의 분벽(分蘖)에 미치는 영향(影響))

  • Huh, Beom-Lyang;Lee, Chang-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.14 no.3
    • /
    • pp.146-156
    • /
    • 1981
  • This study was to observe the effect of rice straw application on the tillering of paddy rice with the varying treatments in which the amount of straw, nitrogen, applying location of rice straw and drainage were involved. The results obtained from the experiments were as follow; 1. The increased application of rice straw not only retarded the tillering of plant, but delayed the maximum tillering and heading stage. It also reduced the maturing rate. 2. The retardment of early tillering caused by the application of rice straw was not recovered by increasing nitrogen. Similarly the maximum tillering and heading stage were not influenced by the increased nitrogen application. 3. Drainage and deep application of rice straw had significant effects on reducing the retardment of early tillering. 4. Rice straw application markedly increased organic matter and potassium contents in the soil.

  • PDF

Studies on the Root Development of the Rice Plants (Oryza sativa L.) in Accordance with Salt- diminution at the Saline Paddy Field (간척지의 숙답화에 따른 수도근군형성에 관한 연구)

  • 정원일
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.28 no.3
    • /
    • pp.299-304
    • /
    • 1983
  • It has been ascertained by a few researchers that soil conditions under which the rice plants were cultivated have some effects upon the root formation of the rice plants. But, much is not known about the root formation of the rice plants cultivated in the saline paddy fields. The goal of the present investigation is to study morphological effects of the soil salinity on the development of the rice root system. The following results were obtained: 1. Under the conditions of higher soil salinity, root systems developed well at surface soil, however, root systems developed well and distributed evenly through surface and sub-soil at the saline fields where soil salinity was lower. 2. The rice plants cultivated in the higher soil salinity form less crown roots than the rice plants which cultivated at the lower soil salinity. 3. As for the formation of the stunted roots, it was found out that relatively rice plant cultivated in higher soil salinity forms more stunted roots than the rice plants cultivated in lower soil salinity. 4. The crown root cultivated in the higher soil salinity forms more lateral roots per unit langth than the root cultivated in lower soil salinity. 5. As for the root hair formation, the crown root cultivated in higher soil salinity bears less haired epidermis and shorter root hairs than the root cultivated in lower soil salinity.

  • PDF

Effects of Alternative Crops Cultivation on Soil Physico-chemical Characteristics and Crop Yield in Paddy Fields (논에서 벼 대체작물 재배가 토양 물리화학성과 작물 수량에 미치는 효과)

  • Han, Kyunghwa;Cho, Hyunjun;Cho, Heerae;Lee, Hyubsung;Ok, Junghun;Seo, Mijin;Jung, Kangho;Zhang, Yongseon;Seo, Youngho
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.2
    • /
    • pp.67-72
    • /
    • 2017
  • BACKGROUND:Cultivation of alternative crops in paddy fields is necessary because of the decrease in rice consumption and the increase in excess stock of rice. The study was conducted to investigate the effects of alternative crops cultivation in paddy fields on soil physico-chemical characteristics and crop yield. METHODS AND RESULTS: Soybean (Glycine max), red-clover (Trifolium pratense), and water convolvulus (Ipomoea aquatica) were selected for alternative crops in the first and/or second year and rice was planted in the third year. When alternative crops were cultivated in the previous year, soil bulk density, soil hardness, and water content were lower than those for rice cultivation. Water-depth decreasing rate and aggregate content were greater for the upland-upland-paddy cropping system than upland-paddy-paddy cropping system. Cultivation of red-clover and water convolvulus for two years resulted in the high soil organic matter content. In the third year, available phosphate, exchangeable potassium, and soil cation exchange capacity were relatively high when soybean was cultivated in the previous year. In the first year, water convolvulus cultivation showed greater productivity than red-clover cultivation while the opposite pattern was found in the second year. Rice yield in the third year was greater for soybean or red-clover as a previous crop than for water convolvulus as a previous crop. CONCLUSION: The results suggest that cultivation of alternative crops in paddy fields can improve soil physical properties including bulk density, hardness, water content, and aggregate content as well as rice productivity.

Pesticide Residue Monitoring and Environmental Exposure in Paddy Field Soils and Greenhouse Soils (전국 논토양과 시설하우스 토양 중 잔류농약 모니터링과 환경 노출성)

  • Park, Byung-Jun;Lee, Ji-Ho
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.134-139
    • /
    • 2011
  • To investigate an amount of pesticide residue in rice paddy field soils and greenhouse soil, this monitoring was carried out pesticide detection frequency and concentrations collected samples from 150 rice paddy field soils and 152 greenhouse soils of nationwide in the year of 2007, and 2008, respectively. The detection limit of pesticides of this experiment were ranged 0.001~0.005 ppm. In 2007, One hundred fifty samples were collected from rice paddy field soils in April and monitored for 120 wide-used pesticides. A total of 11 pesticides were detected four fungicides, four insecticides and three herbicides in paddy field soils. The highest concentration levels of pesticide detected were 0.84 ppm as herbicide oxadiazon, 0.81 ppm as fungicide isoprothiolane and 0.50 ppm as insecticide buprofezin. The detection frequencies range were 0~19.3%, and the frequency was 2.7% as isoprothiolane and 19.3% as oxadiazon in paddy field soils. In 2008, One hundred fifty two samples were collected from greenhouse soils in April and monitored for 120 wide-used pesticides. A total of 29 pesticides were detected six fungicides, sixteen insecticides and seven herbicides in greenhouse soils. high concentration levels of pesticide detected levels were 5.09 ppm as insecticide chlorfenapyr, 2.57 ppm as fungicide chlorothalonil and 0.72 ppm as herbicide oxadiazon. The detection frequencies range were 0~38.8%, and high frequencies were 38.8% as insecticide endosulfan, 13.2% as oxadiazone, 10.5% as fungicide hexaconazole and 7.2% as isoprothiolane in greenhouse soils, Total endosulfan and oxadiazon were showed high detection frequency of 38.8% and 13.2%, respectively.

Growth and yield characteristics of foxtail millet, proso millet and sorghum affected by paddy-upland rotation systems

  • Kim, Young Jung;Yoon, Seong Tak;Yang, jing;Han, Tae Kyu;Jeong, In Ho;Yu, Je Bin;Ye, Min Hee;Shim, Kang Bo
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.347-347
    • /
    • 2017
  • This study is performed to investigate the optimal cropping systems to allow cultivation of upland crops to the paddy rice land. This experiment was conducted at Anseong-si Gyeonggi province of Korea in 2015. In order to investigate growth and yield characteristics of foxtail millet, proso millet and sorghum by different paddy-upland rotation systems, three crops foxtail millet, proso millet and sorghum with four varieties of Samdachal, Samdamae, Kyeongkwan1, Hwanggeumjo in foxtail millet, Leebaekchal, Manhongchal, Hwangsilchal, Hwanggeumgijang in proso millet and Nampungchal, Moktaksusu, Aneunbangisusu, Hwanggeumchal in sorghum were examined. Four paddy-upland rotation systems of paddy-upland rotation, paddy-upland-upland rotation, paddy-upland-upland-upland rotation, and upland-paddy-upland rotation system were tested. Days from seeding to heading and ripening of foxtail millet was the shortest in the paddy-upland-upland-upland rotation system, but proso millet and sorghum did not show statistical difference among four rotation systems. In the average of culm length, paddy-upland-upland-upland rotation system showed the highest culm length in foxtail millet (141.5cm), proso millet (159.6cm) and sorghum (138.6cm) respectively among four paddy-upland rotation systems. In average yield per 10a, foxtail millet and proso millet showed the highest each 234.3kg/10a, 176.2kg/10a in paddy-upland-upland-upland rotation system, whereas sorghum was the highest 221.2kg/10a in paddy-upland-upland rotation system. The most suitable crop and varieties in paddy-upland rotation system was judged to be sorghum among three crops and suitable varieties were Samdachal in foxtail millet, Leebaekchal in proso millet and Nampungchal in sorghum respectively.

  • PDF

Excessive soil water stress responses of sesame (Sesamum indicum L.) and perilla (Perilla frutescens L.) cultivated from paddy fields with different topographic features

  • Ryu, Jongsoo;Baek, Inyeoul;Kwak, Kangsu;Han, Wonyoung;Bae, Jinwoo;Park, Jinki;Chun, Hyen Chung
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.749-760
    • /
    • 2018
  • In Korea, the largest agricultural lands are paddy fields which have poor infiltration and drainage properties. Recently, the Korean government has pursued cultivating upland crops in paddy fields to reduce overproduced rice in Korea. For this policy to succeed, it is critical to understand the topographic information of paddy fields and its effects on upland crops cultivated in the soils of paddy fields. The objective of this study was to characterize the growth properties of sesame and perilla from paddy fields with three soil topographic features and soil water effects which were induced by the topographic features of the sesame and perilla. The crops were planted in paddy fields located in Miryang, Gyeongnam with different topographies: mountain foot slope, local valley and alluvial plain. Soil water contents and groundwater levels were measured every hour during the growing season. The paddy field of the mountain foot slope was significantly effective in alleviating wet injury for the sesame and perilla in the paddy fields. The paddy field of the mountain foot slope had a decreased average soil water content and groundwater level during cultivation. Stress day index (SDI) from the alluvial plain paddy field had the greatest values from both crops and the smallest from the ones from the paddy field of the mountain foot slope. This result means that sesame and perilla had the smallest stress from the soil water content of the paddy field on the mountain foot slope and the greatest stress from the soil water content of the alluvial plain. It is important to consider the topography of paddy fields to reduce wet injury and to increase crop yields.