DOI QR코드

DOI QR Code

Effect of Phosphate Application on Cadmium Extractability and its Uptake by Rice Cultivated in Contaminated Paddy Soil

중금속 오염 논토양에서 카드뮴의 용출성과 벼의 흡수에 대한 인산시용의 효과

  • Lee, Hyun Ho (Department of Life Science and Environmental Biochemistry, College of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Kim, Keun Ki (Department of Life Science and Environmental Biochemistry, College of Life Science and Environmental Biochemistry, Pusan National University) ;
  • Lee, Yong Bok (Division of Applied Life Science, College of Agriculture and Life Science, Gyeongsang National University) ;
  • Kwak, Youn Sig (Division of Applied Life Science, College of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Suk Chul (Organic Agriculture Division, Department of Agricultural Environment, National Institute of Agricultural Science, Rural Development Administration) ;
  • Lee, Sang-beom (Organic Agriculture Division, Department of Agricultural Environment, National Institute of Agricultural Science, Rural Development Administration) ;
  • Shim, Chang Ki (Organic Agriculture Division, Department of Agricultural Environment, National Institute of Agricultural Science, Rural Development Administration) ;
  • Hong, Chang Oh (Department of Life Science and Environmental Biochemistry, College of Life Science and Environmental Biochemistry, Pusan National University)
  • 이현호 (부산대학교 생명자원과학대학 생명환경화학과) ;
  • 김근기 (부산대학교 생명자원과학대학 생명환경화학과) ;
  • 이용복 (경상대학교 농업생명과학대학 응용생명과학부) ;
  • 곽연식 (경상대학교 농업생명과학대학 응용생명과학부) ;
  • 김석철 (농촌진흥청 국립농업과학원 농업환경부 유기농업과) ;
  • 이상범 (농촌진흥청 국립농업과학원 농업환경부 유기농업과) ;
  • 심창기 (농촌진흥청 국립농업과학원 농업환경부 유기농업과) ;
  • 홍창오 (부산대학교 생명자원과학대학 생명환경화학과)
  • Received : 2016.10.18
  • Accepted : 2016.11.10
  • Published : 2016.12.31

Abstract

BACKGROUND: To determine effect of phosphate (P) application on Cadmium (Cd) extractability and its uptake by rice plant in Cd contaminated paddy soil, dipotassium ($K_2HPO_4$) which was the most effective of P materials to decrease Cd extractability in previous study was selected as P fertilizer. METHODS AND RESULTS: Dipotassium phosphate was applied at the rates of 0, 78, 234, and 390 kg $P_2O_5/ha$, and then rice was cultivated in submerged paddy soil from Jun. to Oct. in 2015. Cadmium concentrations in grain, straw, and root of rice plant decreased significantly with increasing application rate of $K_2HPO_4$. The trend of 1 M $NH_4OAc$ extractable Cd concentration in soil was similar to that of Cd uptake by rice plant. One M $NH_4OAc$ extractable Cd concentration was negatively related to soil pH and negative charge. Alleviation of Cd phytoavailability of rice in paddy soil might be attributed to increase in pH and negative charge of soil. Using a quadratic response model, amount of grain yield were related to $K_2HPO_4$ application rates as Grain yield = $5.38+2.39{\times}10^{-3}K_2HPO_4-6.65{\times}10^{-6}K_2HPO{_4}^2$ (model $R^2=0.968$). Using this equations, the greatest grain yield (5.6 Mg/ha) was at the rate of 180 kg $P_2O_5/ha$. At this application rate of P, the Cd concentration in grain was 0.53 mg/kg, implying ca. 23% lower than the control. CONCLUSION: From the view point of heavy metal safety and crop productivity, it might be good P management to apply P fertilizer with 4 times higher rate than recommendation (45 kg/ha).

Keywords

References

  1. Alidoust, D., Kawahigashi, M., Yoshizawa, S., Sumida, H., & Watanabe, M. (2015). Mechanism of cadmium biosorption from aqueous solutions using calcined oyster shells. Journal of Environmental Management, 150, 103-110. https://doi.org/10.1016/j.jenvman.2014.10.032
  2. Andersson, A., & Siman, G. (1991). Levels of Cd and some other trace elements in soils and crops as influenced by lime and fertilizer level. Acta Agriculturae Scandinavica, 41(1), 3-11. https://doi.org/10.1080/00015129109438579
  3. Angelova, V., Ivanova, R., Delibaltova, V., & Ivanov, K. (2004). Bio-accumulation and distribution of heavy metals in fibre crops (flax, cotton and hemp). Industrial Crops and Products, 19(3), 197-205. https://doi.org/10.1016/j.indcrop.2003.10.001
  4. Boisson, J., Mench, M., Vangronsveld, J., Ruttens, A., Kopponen, P., & De Koe, T. (1999). Immobilization of trace metals and arsenic by different soil additives: evaluation by means of chemical extractions. Communications in Soil Science & Plant Analysis, 30 (3-4), 365-387. https://doi.org/10.1080/00103629909370210
  5. Bolan, N. S., Adriano, D. C., Mani, P. A., & Duraisamy, A. (2003). Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime addition. Plant and Soil, 251(2), 187-198. https://doi.org/10.1023/A:1023037706905
  6. Chen, S., Xu, M., Ma, Y., & Yang, J. (2007). Evaluation of different phosphate amendments on availability of metals in contaminated soil. Ecotoxicology and Environmental Safety, 67(2), 278-285. https://doi.org/10.1016/j.ecoenv.2006.06.008
  7. Fassler, E., Robinson, B. H., Stauffer, W., Gupta, S. K., Papritz, A., & Schulin, R. (2010). Phytomanagement of metal-contaminated agricultural land using sunflower, maize and tobacco. Agriculture, Ecosystems & Environment, 136(1), 49-58. https://doi.org/10.1016/j.agee.2009.11.007
  8. Gray, C. W., McLaren, R. G., Roberts, A. H. C., & Condron, L. M. (1999). Effect of soil pH on cadmium phytoavailability in some New Zealand soils. New Zealand Journal of Crop and Horticultural Science, 27(2), 169-179. https://doi.org/10.1080/01140671.1999.9514093
  9. Hong, C. O., Kim, Y. G., Lee, S. M., Park, H. C., Kim, K. K., Son, H. J., Cho, J. H., & Kim, P. J. (2013). Liming effect on cadmium immobilization and phytoavailability in paddy soil affected by mining activity. Korean Journal of Environmental Agriculture, 32(1), 1-8. https://doi.org/10.5338/KJEA.2013.32.1.1
  10. Hong, C. O., Kim, S. Y., Gutierrez, J., Owens, V. N., & Kim, P. J. (2010). Comparison of oyster shell and calcium hydroxide as liming materials for immobilizing cadmium in upland soil. Biology and Fertility of Soils, 46(5), 491-498. https://doi.org/10.1007/s00374-010-0458-8
  11. Hong, C. O., Lee, D. K., & Kim, P. J. (2008). Feasibility of phosphate fertilizer to immobilize cadmium in a field. Chemosphere, 70(11), 2009-2015. https://doi.org/10.1016/j.chemosphere.2007.09.025
  12. Hong, C. O., Owens, V. N., Kim, Y. G., Lee, S. M., Park, H. C., Kim, K. K., Son, H. J., Suh, J. M., & Kim, P. J. (2014). Soil pH effect on phosphate induced cadmium precipitation in arable soil. Bulletin of Environmental Contamination and Toxicology, 93(1), 101-105. https://doi.org/10.1007/s00128-014-1273-y
  13. John, M. K., VanLaerhoven, C. J., & Chuah, H. H. (1972). Factors affecting plant uptake and phytotoxicity of cadmium added to soils. Environmental Science & Technology, 6(12), 1005-1009. https://doi.org/10.1021/es60071a008
  14. Khan, D. H., & Frankland, B. (1983). Effects of cadmium and lead on radish plants with particular reference to movement of metals through soil profile and plant. Plant and Soil, 70(3), 335-345. https://doi.org/10.1007/BF02374890
  15. Kim, M. K., Kim, W. I., Jung, G. B., Park, K. L., Yun, S. G., & Eom, K. C. (2004). Effects of lime and humic acid on the cadmium availability and its uptake by rice in paddy soils. Korean Journal of Environmental Agriculture, 23(1), 28-33. https://doi.org/10.5338/KJEA.2004.23.1.028
  16. Kim, S. U., Owens, V. N., Kim, Y. G., Lee, S. M., Park, H. C., Kim, K. K. Son, H. J., & Hong, C. O. (2015). Effect of phosphate addition on cadmium precipitation and adsorption in contaminated arable soil with a low concentration of cadmium. Bulletin of Environmental Contamination and Toxicology, 95(5), 675-679. https://doi.org/10.1007/s00128-015-1621-6
  17. Kim, W. I., Kim, M. S., Roh, K. A., Lee, J. S., Yun, S. G., Park, B. J., Jung, G. B., Kang, C. S., Cho, K. R., Ahn, M. S., Choi, S. C., Kim, H. J., Kim, Y. S., Nam, Y. K., Choi, M. T., Moon, Y. H., Ahn, B. K., Kim, H. K., Kim, H. W., Seo, Y. J., Kim, J. S., Choi, Y. J., Lee, Y. H., Lee, S. C., & Hwang, J. J. (2008). Long-term monitoring of heavy metal contents in paddy soils. Korean Journal of Soil Science and Fertilizer, 41(3), 190-198.
  18. Kreutzer, K. (1995). Effects of forest liming on soil processes. Plant and Soil 168(1), 447-470. https://doi.org/10.1007/BF00029358
  19. Lee, H. H., & Hong, C. O. (2015). Contrast Effect of Citric Acid and ethylenediaminetetraacetic ecid on cadmium extractability in arable soil. Korean Journal of Soil Science and Fertilizer, 48(6), 634-640. https://doi.org/10.7745/KJSSF.2015.48.6.634
  20. Lee, J. H., & Doolittle, J. J. (2002). Phosphate associated cadmium immobilization mechanism depending on the original concentration of Cd in soil. Soil Science, 49(5), 390-400.
  21. Mandjiny, S., Matis, K. A., Zouboulis, A. I., Fedoroff, M., Jeanjean, J., Rouchaud, J. C., Toulhoat, N., Potocek, V., Loos-Neskovic, C., Maireles-Torres, P., & Jones, D. (1998). Calcium hydroxyapatites: evaluation of sorption properties for cadmium ions in aqueous solution. Journal of Materials Science, 33(22), 5433-5439. https://doi.org/10.1023/A:1004462703824
  22. Marchiol, L., Fellet, G., Perosa, D., & Zerbi, G. (2007). Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiology and Biochemistry, 45(5), 379-387. https://doi.org/10.1016/j.plaphy.2007.03.018
  23. McGowen, S. L., Basta, N. T., & Brown, G. O. (2001). Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. Journal of Environmental Quality, 30(2), 493-500. https://doi.org/10.2134/jeq2001.302493x
  24. McLaughlin, M. J., & Singh, B. R. (1999). Cadmium in soils plants. pp. 257-263, Kluwer academic publishers, UK.
  25. Naidu, R., Bolan, N. S., Kookana, R. S., & Tiller, K. G. (1994). Ionic‐strength and pH effects on the sorption of cadmium and the surface charge of soils. European Journal of Soil Science, 45(4), 419-429. https://doi.org/10.1111/j.1365-2389.1994.tb00527.x
  26. Neugschwandtner, R. W., Tlustos, P., Komarek, M., & Szakova, J. (2008). Phytoextraction of Pb and Cd from a contaminated agricultural soil using different EDTA application regimes: laboratory versus field scale measures of efficiency. Geoderma, 144(3), 446-454. https://doi.org/10.1016/j.geoderma.2007.11.021
  27. Ok, Y. S., Oh, S. E., Ahmad, M., Hyun, S., Kim, K. R., Moon, D. H., Lee, S. S., Lim, K. J., Jeon, W., & Yang, J. E. (2010). Effects of natural and calcined oyster shells on Cd and Pb immobilization in contaminated soils. Environmental Earth Sciences, 61(6), 1301-1308. https://doi.org/10.1007/s12665-010-0674-4
  28. Pierzynski, G. M., & Schwab, A. P. (1993). Bioavailability of zinc, cadmium, and lead in a metal-contaminated alluvial soil. Journal of Environmental Quality, 22(2), 247-254. https://doi.org/10.2134/jeq1993.00472425002200020003x
  29. Santillan-Medrano, J., & Jurinak, J. J. (1975). The chemistry of lead and cadmium in soil: solid phase formation. Soil Science Society of America Journal, 39(5), 851-856. https://doi.org/10.2136/sssaj1975.03615995003900050020x
  30. Seaman, J. C., Arey, J. S., & Bertsch, P. M. (2001). Immobilization of nickel and other metals in contaminated sediments by hydroxyapatite addition. Journal of Environmental Quality, 30(2), 460-469. https://doi.org/10.2134/jeq2001.302460x
  31. Srivastava, S., Sounderajan, S., Udas, A., & Suprasanna, P. (2014). Effect of combinations of aquatic plants (Hydrilla, Ceratophyllum, Eichhornia, Lemna and Wolffia) on arsenic removal in field conditions. Ecological Engineering, 73, 297-301. https://doi.org/10.1016/j.ecoleng.2014.09.029
  32. Street, J. J., Sabey, B. R., & Lindsay, W. L. (1978). Influence of pH, phosphorus, cadmium, sewage sludge, and incubation time on the solubility and plant uptake of cadmium. Journal of Environmental Quality, 7(2), 286-290.
  33. Vamerali, T., Bandiera, M., Lucchini, P., Dickinson, N. M., & Mosca, G. (2014). Long-term phytomanagement of metal-contaminated land with field crops: integrated remediation and biofortification. European Journal of Agronomy, 53, 56-66. https://doi.org/10.1016/j.eja.2013.11.008