• Title/Summary/Keyword: Ricci flat manifold

Search Result 18, Processing Time 0.021 seconds

ON ALMOST QUASI RICCI SYMMETRIC MANIFOLDS

  • Kim, Jaeman
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.603-611
    • /
    • 2020
  • The purpose of this note is to introduce a type of Riemannian manifold called an almost quasi Ricci symmetric manifold and investigate the several properties of such a manifold on which some geometric conditions are imposed. And the existence of such a manifold is ensured by a proper example.

η-Ricci Solitons in δ-Lorentzian Trans Sasakian Manifolds with a Semi-symmetric Metric Connection

  • Siddiqi, Mohd Danish
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.3
    • /
    • pp.537-562
    • /
    • 2019
  • The aim of the present paper is to study the ${\delta}$-Lorentzian trans-Sasakian manifold endowed with semi-symmetric metric connections admitting ${\eta}$-Ricci Solitons and Ricci Solitons. We find expressions for the curvature tensor, the Ricci curvature tensor and the scalar curvature tensor of ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection. Also, we discuses some results on quasi-projectively flat and ${\phi}$-projectively flat manifolds endowed with a semi-symmetric-metric connection. It is shown that the manifold satisfying ${\bar{R}}.{\bar{S}}=0$, ${\bar{P}}.{\bar{S}}=0$ is an ${\eta}$-Einstein manifold. Moreover, we obtain the conditions for the ${\delta}$-Lorentzian trans-Sasakian manifolds with a semisymmetric-metric connection to be conformally flat and ${\xi}$-conformally flat.

ON QUASI RICCI SYMMETRIC MANIFOLDS

  • Kim, Jaeman
    • Korean Journal of Mathematics
    • /
    • v.27 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • In this paper, we study a type of Riemannian manifold, namely quasi Ricci symmetric manifold. Among others, we show that the scalar curvature of a quasi Ricci symmetric manifold is constant. In addition if the manifold is Einstein, then its Ricci tensor is zero. Also we prove that if the associated vector field of a quasi Ricci symmetric manifold is either recurrent or concurrent, then its Ricci tensor is zero.

RIEMANNIAN SUBMERSIONS WHOSE TOTAL MANIFOLD ADMITS h-ALMOST RICCI-YAMABE SOLITON

  • Mehraj Ahmad Lone;Towseef Ali Wani
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.479-492
    • /
    • 2024
  • In this paper, we study Riemannian submersions whose total manifold admits h-almost Ricci-Yamabe soliton. We characterize the fibers of the submersion and see under what conditions the fibers form h-almost Ricci-Yamabe soliton. Moreover, we find the necessary condition for the base manifold to be an h-almost Ricci-Yamabe soliton and Einstein manifold. Later, we compute scalar curvature of the total manifold and using this we find the necessary condition for h-almost Yamabe solition to be shrinking, expanding and steady. At the end, we give a non-trivial example.

∗-RICCI SOLITONS AND ∗-GRADIENT RICCI SOLITONS ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS

  • Dey, Dibakar;Majhi, Pradip
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.625-637
    • /
    • 2020
  • The object of the present paper is to characterize 3-dimensional trans-Sasakian manifolds of type (α, β) admitting ∗-Ricci solitons and ∗-gradient Ricci solitons. Under certain restrictions on the smooth functions α and β, we have proved that a trans-Sasakian 3-manifold of type (α, β) admitting a ∗-Ricci soliton reduces to a β-Kenmotsu manifold and admitting a ∗-gradient Ricci soliton is either flat or ∗-Einstein or it becomes a β-Kenmotsu manifold. Also an illustrative example is presented to verify our results.

SOME NOTES ON NEARLY COSYMPLECTIC MANIFOLDS

  • Yildirim, Mustafa;Beyendi, Selahattin
    • Honam Mathematical Journal
    • /
    • v.43 no.3
    • /
    • pp.539-545
    • /
    • 2021
  • In this paper, we study some symmetric and recurrent conditions of nearly cosymplectic manifolds. We prove that Ricci-semisymmetric and Ricci-recurrent nearly cosymplectic manifolds are Einstein and conformal flat nearly cosymplectic manifold is locally isometric to Riemannian product ℝ × N, where N is a nearly Kähler manifold.

On *-Conformal Ricci Solitons on a Class of Almost Kenmotsu Manifolds

  • Majhi, Pradip;Dey, Dibakar
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.781-790
    • /
    • 2021
  • The goal of this paper is to characterize a class of almost Kenmotsu manifolds admitting *-conformal Ricci solitons. It is shown that if a (2n + 1)-dimensional (k, µ)'-almost Kenmotsu manifold M admits *-conformal Ricci soliton, then the manifold M is *-Ricci flat and locally isometric to ℍn+1(-4) × ℝn. The result is also verified by an example.

ON RICCI CURVATURES OF LEFT INVARIANT METRICS ON SU(2)

  • Pyo, Yong-Soo;Kim, Hyun-Woong;Park, Joon-Sik
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.255-261
    • /
    • 2009
  • In this paper, we shall prove several results concerning Ricci curvature of a Riemannian manifold (M, g) := (SU(2), g) with an arbitrary given left invariant metric g. First of all, we obtain the maximum (resp. minimum) of {r(X) := Ric(X,X) | ${||X||}_g$ = 1,X ${\in}$ X(M)}, where Ric is the Ricci tensor field on (M, g), and then get a necessary and sufficient condition for the Levi-Civita connection ${\nabla}$ on the manifold (M, g) to be projectively flat. Furthermore, we obtain a necessary and sufficient condition for the Ricci curvature r(X) to be always positive (resp. negative), independently of the choice of unit vector field X.

SEMI-RIEMANNIAN SUBMANIFOLDS OF A SEMI-RIEMANNIAN MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

  • Yucesan, Ahmet;Yasar, Erol
    • Communications of the Korean Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.781-793
    • /
    • 2012
  • We study some properties of a semi-Riemannian submanifold of a semi-Riemannian manifold with a semi-symmetric non-metric connection. Then, we prove that the Ricci tensor of a semi-Riemannian submanifold of a semi-Riemannian space form admitting a semi-symmetric non-metric connection is symmetric but is not parallel. Last, we give the conditions under which a totally umbilical semi-Riemannian submanifold with a semi-symmetric non-metric connection is projectively flat.