• Title/Summary/Keyword: Rhodococcus sp.

Search Result 77, Processing Time 0.031 seconds

Development of Biofilter for Reducing Offensive Odor from Pig House (돈사 악취 저감을 위한 바이오필터 개발)

  • Lee, Seung-Joo;Lim, Song-Soo;Chang, Dong-Il;Chang, Hong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.386-390
    • /
    • 2005
  • This study was conducted to develop the biofilter fur reducing ammonia $(NH_3)$ and hydrogen sulfide $(H_2S)$ gas emission from a pig house. A biofilter was designed and constructed by a type of squeeze air into the column type of air flow upward. Its column size was ${\Phi}260{\times}360mm$. It was used pressure drop gauge, turbo blower, air temperature, velocity sensor and control program that was programed by LabWindows CVI 5.5. Mixing materials were consisted with composted pine tree bark and perlite with 7:3 ratio (volume). The biofilter media inoculated with ammonia (Rhodococcus equi A3) and hydrogen sulfide (Alcaligenes sp. S5-5.2) oxidizing microorganisms was installed in a commercial pig house to analyzed the effectiveness of biogas removal for 10 days. Removal rates of ammonia and hydrogen sulfide gases were 90.8% and 81.5%, respectively. This result suggests that the pine compost-perlite mixture biofilter is effective and economic for reducing ammonia ana hydrogen sulfide gases.

Identification of Endophytic Bacteria Isolated from Rusty-colored Root of Korean Ginseng (Panax ginseng) and Its Induction (적변삼으로부터 분리한 내생세균의 동정 및 적변 유발)

  • Choi, Jae-Eul;Ryuk, Jin-Ah;Kim, Jin-Hee;Choi, Chun-Hwan;Chun, Jong-Sik;Kim, Young-Jun;Lee, Hyang-Burm
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • While the rusty-colored root is common in ginsengs culture and, often results in a severe economic loss, the major factors have not been found. This study was focused on the determination of a potential relationship between rusty root and endophytic bacteria. The number of endophytes was $9.6\;{\times}\;10^1{\sim}1.5\;{\times}\;10^2\;cfu/g$ fw in normal ginseng roots compared to $3.7\;{\times}\;10^6{\sim}5.1\;{\times}\;10^7\;cfu/g$ fw in rusty ones. Of 31 isolates from rusty ginseng roots, twenty-four isolates repeatedly induced severe to moderate rust on root while seven isolates induced slight rust. The bacteria responsible for rusty ginseng roots were mainly Gram negative aerobic. Rust inducing bacteria were identified as Agrobacterium tumefaciens, A. rhizogenes, Burkholderia phenazinium, Ensifer adharens, Lysobacter gummosus, Microbacterium luteolum, M. oxydans, Pseudomonas marginalis, P. veronii, Pseudomonas sp., Rhizobium leguminosarum, R. tropica, Rhodococcus erythropolis, Rh. globerulus, Variovorax paradoxus on the basis of bacteriological characters and 16S rDNA sequences analysis. The results in this study strongly suggested that the rusty ginseng roots were produced by infection and growth of endophytic bacteria.

Effect of Biofilter Made of Composted Pine Tree Bark and Perils on Reducing Odor from Pig House (부숙수피-펄라이트 혼합충전재의 돈사악취 제거 효과)

  • Lee, Seung-Joo;Chang, Dong-Il;Chang, Hong-Hee
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.118-123
    • /
    • 2006
  • To remove effectively order component ($NH_3\;and\;H_2S$) from pig house, biofilter was made of composted pine tree bark and polite and odor removal efficiency was evaluated in the lab and pilot scales. The columns were designed with ${\Phi}120mm{\times}450mm$ (H) and ${\Phi}850mm{\times}900mm$ (H) in the size in the lab and pilot scale testes, respectively. Single material of composted pine tree bark and polite and the mixture of two materials with 7:3 ratios (vol/vol) were packed in the column, and, herein air flow was controlled upward direction from column bottom. To enhance the efficiency of biofilter, ammonia (Rhodococcus equi A3) and hydrogen sulfide oxidizing bacteria (Alcaligenes sp. S5-5.2) were inoculated in packing materials before the test Removal effect of ammonia and hydrogen sulfide gases were higher in the mixture$[88.7{\sim}98.2%,\;89.5{\sim}97.9%]$ than that in single packing material (composted pine tree haft$[89.4{\sim}98.7%,\;78.7{\sim}85.6%]$ and petite$[65.3{\sim}73.2%,\;88.7{\sim}98.2%]$ by the lab scale biofilter. In the modeled pig house, about 96 and 91% of ammonia and hydrogen sulfide gases were removed by the pilot scale of biofilter, respectively. Conclusively, composted pine tree bark and polite could be a good candidate of biofilter packing materials to remove the odor components.

Specific Biodegradation of Polychlorinated Biphenyls (PCBs) Facilitated by Plant Terpenoids

  • Jung, Kyung-Ja;Eungbin kim;So, Jae-Seong;Koh, Sung-Cheol
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.6 no.1
    • /
    • pp.61-66
    • /
    • 2001
  • The aim of this study was to examine how plant terpenoids, as natural growth substrates or inducers, would affect the biodegradation of PCB congeners. Various PCB degraders that could grow on biphenyl and several terpenoids were tested for their PCB degradation capabilities. Degradation activities of the PCB congeners, 4,4-dichlorobiphenyl (4,4-DCBp) and 2,2-dichlorobiphenyl (2,2-DCBp), were initially monitored through a resting cell assay technique that could detect their degradation products. The PCB degraders, Pseudomonas ((S)-(-) limonene, p-cymene and $\alpha$-terpinene) whereas Arthrobacter sp. B1B could not grow on the terpenoids as a sole carbon source. The B1B strain grown on biphenyl exhibited good degradation activity for 4,4-DCBp and 2,2-DCBp, while the activity of strains P166 and T104 was about 25% that of the B1B strain, respectively. Concomitant GC analysis, however, demonstrated that strain T104, grown on (S)-(-) limonene, p-cymene and $\alpha$-terpinene, could degrade 4,4-DCBp up to 30%, equivalent to 50% of the biphenyl induction level. Moreover, strain T104 grown on (S)-(-) limonene, could also degrade 2,2-DCBp up to 30%. This indicates that terpenoids, widely distributed in nature, could be utilized as both growth and/or inducer substrate(s) for PCB biodegradation in the environment.

  • PDF

Cloning, Expression, and Characterization of a Cold-Active and Organic Solvent-Tolerant Lipase from Aeromicrobium sp. SCSIO 25071

  • Su, Hongfei;Mai, Zhimao;Yang, Jian;Xiao, Yunzhu;Tian, Xinpeng;Zhang, Si
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.6
    • /
    • pp.1067-1076
    • /
    • 2016
  • The gene encoding lipase (Lip98) from Aeromicrobium sp. SCSIO 25071 was cloned and functionally expressed in Escherichia coli. Lip98 amino acid sequence shares the highest (49%) identity to Rhodococcus jostii RHA1 lipase and contains a novel motif (GHSEG), which is different from other clusters in the lipase superfamily. The recombinant lipase was purified to homogeneity with Ni-NTA affinity chromatography. Lip98 showed an apparent molecular mass of 30 kDa on SDS gel. The optimal temperature and pH value for enzymatic activity were recorded at 30℃ and 7.5, respectively. Lip98 exhibited high activity at low temperatures with 35% maximum activity at 0℃ and good stability at temperatures below 35℃. Its calculated activation energy was 4.12 kcal/mol at the low temperature range of 15-30℃. Its activity was slightly affected by some metal ions such as K+, Ca2+, and Na+. The activity of Lip98 was increased by various organic solvents such as DMSO, ethanol, acetone, and hexane with the concentration of 30% (v/v) and retained more than 30% residual activity in neat organic solvent. The unique characteristics of Lip98 imply that it is a promising candidate for industrial application as a nonaqueous biocatalyst and food additive.

Genetic Organization of the dhlA Gene Encoding 1,2-Dichloroethane Dechlorinase from Xanthobacter flavus UE15

  • Song, Ji-Sook;Lee, Dong-Hun;Lee, Kyoung;Kim, Chi-Kyung
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.188-193
    • /
    • 2004
  • Xanthobacter flavus strain UE15 was isolated in wastewater obtained from the Ulsan industrial complex, Korea. This strain functions as a 1,2-dichloroethane (1,2-DCA) degrader, via a mechanism of hydrolytic dechlorination, under aerobic conditions. The UE15 strain was also capable of dechlorinating other chloroaliphatics such as 2-chloroacetic acid and 2-chloropropionic acid. The dhlA gene encoding 1,2-DCA dechlorinase was cloned from the genomic DNA of the UE15 strain, and its nucleotide sequence was determined to consist of 933 base pairs. The deduced amino acid sequence of the DhlA dechlorinase exhibited 100% homology with the corresponding enzyme from X. autotrophicus GJ10, but only 27 to 29% homology with the corresponding enzymes from Rhodococcus rhodochrous, Pseudomonas pavonaceae, and Mycobacterium sp. strain GP1, which all dechlorinate haloalkane compounds. The UE15 strain has an ORF1 (1,356 bp) downstream from the dhlA gene. The OFR1 shows 99% amino acid sequence homology with the transposase reported from X. autotrophicus GJ10. The transposase gene was not found in the vicinity of the dhlA in the GJ10 strain, but rather beside the dhlB gene coding for haloacid dechlorinase. The dhlA and dhlB genes were confirmed to be located at separate chromosomal loci in the Xanthobacter flavus UE15 strain as well as in X. autotrophicus GJ10. The dhlA and transposase the UE15 strain were found to be parenthesized by a pair of insertion sequences, 181247, which were also found on both sides of the transposase gene in the GJ10 strain. This unique structure of the dhlA gene organization in X. flavus strain UE15 suggested that the dechlorinase gene, dhlA, is transferred with the help of the transposase gene.

Inhibitory Effect of Aged Petroleum Hydrocarbons on the Survival of Inoculated Microorganism in a Crude-Oil-Contaminated Site

  • Kang, Yoon-Suk;Park, Youn-Jong;Jung, Jae-Joon;Park, Woo-Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1672-1678
    • /
    • 2009
  • We studied the effects of aged total petroleum hydrocarbons (aged TPH) on the survival of allochthonous diesel-degrading Rhodococcus sp. strain YS-7 in both laboratory and field investigations. The aged TPH extracted from a crude-oil-contaminated site were fractionized by thin-layer chromatography/flame ionization detection (TLC/FID). The three fractions identified were saturated aliphatic (SA), aromatic hydrocarbon (AH), and asphaltene-resin (AR). The ratio and composition of the separated fractions in the aged TPH were quite different from the crude-oil fractions. In the aged TPH, the SA and AH fractions were reduced and the AR fraction was dramatically increased compared with crude oil. The SA and AH fractions (2 mg/l each) of the aged TPH inhibited the growth of strain YS-7. Unexpectedly, the AR fraction had no effect on the survival of strain YS-7. However, crude oil (1,000 mg/l) did not inhibit the growth of strain YS-7. When strain YS-7 was inoculated into an aged crude-oil-contaminated field and its presence was monitored by fluorescent in situ hybridization (FISH), we discovered that it had disappeared on 36 days after the inoculation. For the first time, this study has demonstrated that the SA and AH fractions in aged TPH are more toxic to an allochthonous diesel-degrading strain than the AR fraction.